
Full vendor support
Indirect, but comprehensive support, by vendor
Vendor support, but not (yet) entirely comprehensive

Comprehensive support, but not by vendor

Limited, probably indirect support – but at least some
No direct support available, but of course one could ISO-C-

bind your way through it or directly link the libraries
C++ C++ (sometimes also C)
Fortran Fortran

CUDA HIP SYCL OpenACC OpenMP Standard Kokkos ALPAKA
C++ Fortran C++ Fortran C++ Fortran C++ Fortran C++ Fortran C++ Fortran C++ Fortran C++ Fortran Python

NVIDIA 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

AMD 18 19 20 4 21 6 22 23 24 24 25 26 27 14 28 16 29

Intel 30 31 32 33 34 6 35 35 36 36 37 38 39 14 40 16 41

• 1: CUDA C/C++ is supported on NVIDIA GPUs through the CUDA Toolkit
• 2: CUDA Fortran, a proprietary Fortran extension, is supported on NVIDIA GPUs via the NVIDIA HPC SDK
• 3: HIP programs can directly use NVIDIA GPUs via a CUDA backend; HIP is maintained by AMD
• 4: No such thing like HIP for Fortran, but AMD offers Fortran interfaces to HIP and ROCm libraries in hipfort
• 5: SYCL can be used on NVIDIA GPUs with experimental support either in SYCL directly or in DPC++, or via hipSYCL
• 6: No such thing like SYCL for Fortran
• 7: OpenACC C/C++ supported on NVIDIA GPUs directly (and best) through NVIDIA HPC SDK; additional, somewhat limited support by GCC C compiler and in LLVM through Clacc
• 8: OpenACC Fortran supported on NVIDIA GPUs directly (and best) through NVIDIA HPC SDK; additional, somewhat limited support by GCC Fortran compiler and Flacc
• 9: OpenMP in C++ supported on NVIDIA GPUs through NVIDIA HPC SDK (albeit with a few limits), by GCC, and Clang; see OpenMP ECP BoF on status in 2022.
• 10: OpenMP in Fortran supported on NVIDIA GPUs through NVIDIA HPC SDK (but not full OpenMP feature set available), by GCC, and Flang
• 11: pSTL features supported on NVIDIA GPUs through NVIDIA HPC SDK
• 12: Standard Language parallel features supported on NVIDIA GPUs through NVIDIA HPC SDK
• 13: Kokkos supports NVIDIA GPUs by calling CUDA as part of the compilation process
• 14: Kokkos is a C++ model, but an official compatibility layer (Fortran Language Compatibility Layer, FLCL) is available.
• 15: Alpaka supports NVIDIA GPUs by calling CUDA as part of the compilation process; also, an OpenMP backend can be used
• 16: Alpaka is a C++ model
• 17: There is a vast community of offloading Python code to NVIDIA GPUs, like CuPy, Numba, cuNumeric, and many others; NVIDIA actively supports a lot of them, but has no direct product

like CUDA for Python; so, the status is somewhere in between
• 18: hipify by AMD can translate CUDA calls to HIP calls which runs natively on AMD GPUs
• 19: AMDoffers a Source-to-Source translator to convert someCUDA Fortran functionality toOpenMP for AMDGPUs (gpufort); in addition, there are ROCm library bindings for Fortran in hipfort

OpenACC/CUDA Fortran Source-to-Source translator
• 20: HIP is the preferred native programmingmodel for AMD GPUs
• 21: SYCL can use AMD GPUs, for example with hipSYCL or DPC++ for HIP AMD
• 22: OpenACC C/C++ can be used on AMD GPUs via GCC or Clacc; also, Intel's OpenACC to OpenMP Source-to-Source translator can be used to generate OpenMP directives from OpenACC

directives
• 23: OpenACC Fortran can be used on AMDGPUs via GCC; also, AMD's gpufort Source-to-Source translator canmoveOpenACC Fortran code to OpenMP Fortran code, and also Intel's translator

can work
• 24: AMD offers a dedicated, Clang-based compiler for using OpenMP on AMD GPUs: AOMP; it supports both C/C++ (Clang) and Fortran (Flang, example)
• 25: Intel's DPC++ (oneAPI) can be compiled with an experimental HIP AMD backend, allowing to launch STL algorithms to AMD GPUs; caveats from Intel's STL support apply
• 26: Currently, no (known) way to launch Standard-based parallel algorithms on AMD GPUs
• 27: Kokkos supports AMD GPUs through HIP
• 28: Alpaka supports AMD GPUs through HIP or through an OpenMP backend
• 29: AMD does not officially support GPU programming with Python (also not semi-officially like NVIDIA), but third-party support is available, for example through Numba (currently inactive)

or a HIP version of CuPy
• 30: SYCLomatic translates CUDA code to SYCL code, allowing it to run on Intel GPUs; also, Intel's DPC++ Compatibility Tool can transform CUDA to SYCL
• 31: No direct support, only via ISO C bindings, but at least an example can be found on GitHub; it's pretty scarce and not by Intel itself, though
• 32: CHIP-SPV supports mapping CUDA and HIP to OpenCL and Intel's Level Zero, making it run on Intel GPUs
• 33: No such thing like HIP for Fortran
• 34: SYCL is the prime programming model for Intel GPUs; actually, SYCL is only a standard, while Intel's implementation of it is called DPC++ (Data Parallel C++), which extends the SYCL

standard in various places; actually actually, Intel namespaces everything oneAPI these days, so the full proper name is Intel oneAPI DPC++ (which incorporates a C++ compiler and also a
library)

• 35: OpenACC can be used on Intel GPUs by translating the code to OpenMP with Intel's Source-to-Source translator
• 36: Intel has extensive support for OpenMP through their latest compilers
• 37: Intel supports pSTL algorithms through their DPC++ Library (oneDPL; GitHub). It's heavily namespaced and not yet on the same level as NVIDIA
• 38: With Intel oneAPI 2022.3, Intel supports DO CONCURRENT with GPU offloading
• 39: Kokkos supports Intel GPUs through SYCL
• 40: Alpaka v0.9.0 introduces experimental SYCL support; also, Alpaka can use OpenMP backends
• 41: Not a lot of support available at the moment, but notably DPNP, a SYCL-based drop-in replacement for Numpy, and numba-dpex, an extension of Numba for DPC++.

1

https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/hpc-sdk
https://github.com/ROCm-Developer-Tools/HIP
https://github.com/ROCmSoftwarePlatform/hipfort
https://github.com/codeplaysoftware/sycl-for-cuda/blob/cuda/sycl/doc/GetStartedWithSYCLCompiler.md#build-sycl-toolchain-with-support-for-nvidia-cuda
https://github.com/intel/llvm/blob/sycl/sycl/doc/GetStartedGuide.md#build-dpc-toolchain-with-support-for-nvidia-cuda
https://github.com/illuhad/hipSYCL
https://gcc.gnu.org/wiki/OpenACC
https://csmd.ornl.gov/project/clacc
https://ieeexplore.ieee.org/document/9651310
https://docs.nvidia.com/hpc-sdk/compilers/hpc-compilers-user-guide/index.html#openmp-use
https://www.openmp.org/wp-content/uploads/2022_ECP_Community_BoF_Days-OpenMP_RoadMap_BoF.pdf
https://docs.nvidia.com/hpc-sdk/compilers/c++-parallel-algorithms/
https://github.com/kokkos/kokkos
https://github.com/kokkos/kokkos-fortran-interop
https://github.com/alpaka-group/alpaka
https://cupy.dev/
https://numba.pydata.org/
https://developer.nvidia.com/cunumeric
https://github.com/ROCm-Developer-Tools/HIPIFY
https://github.com/ROCmSoftwarePlatform/gpufort
https://github.com/ROCmSoftwarePlatform/hipfort
https://github.com/ROCm-Developer-Tools/HIP
https://github.com/illuhad/hipSYCL
https://github.com/intel/llvm/blob/sycl/sycl/doc/GetStartedGuide.md#build-dpc-toolchain-with-support-for-hip-amd
https://github.com/intel/intel-application-migration-tool-for-openacc-to-openmp
https://github.com/intel/intel-application-migration-tool-for-openacc-to-openmp
https://github.com/ROCm-Developer-Tools/aomp
https://github.com/ROCm-Developer-Tools/aomp/tree/aomp-dev/examples/fortran/simple_offload
https://intel.github.io/llvm-docs/GetStartedGuide.html#build-dpc-toolchain-with-support-for-hip-amd
https://numba.pydata.org/numba-doc/latest/roc/index.html
https://docs.cupy.dev/en/latest/install.html?highlight=rocm#building-cupy-for-rocm-from-source
https://github.com/oneapi-src/SYCLomatic
https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compatibility-tool.html
https://github.com/codeplaysoftware/SYCL-For-CUDA-Examples/tree/master/examples/fortran_interface
https://github.com/CHIP-SPV/chip-spv
https://www.khronos.org/sycl/
https://www.intel.com/content/www/us/en/developer/tools/oneapi/data-parallel-c-plus-plus.html
https://github.com/intel/intel-application-migration-tool-for-openacc-to-openmp
https://www.intel.com/content/www/us/en/develop/documentation/get-started-with-cpp-fortran-compiler-openmp/top.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-library.html#gs.fifrh5
https://github.com/oneapi-src/oneDPL
https://www.intel.com/content/www/us/en/developer/articles/release-notes/fortran-compiler-release-notes.html
https://github.com/alpaka-group/alpaka/releases/tag/0.9.0
https://intelpython.github.io/dpnp/
https://github.com/IntelPython/numba-dpex

