
FAS-GED: GPU-Accelerated Graph Edit
Distance Computation.

Adel Dabah, Andreas Herten
Jülich Supercomputing Centre, Forschungszentrum Jülich, DE

a.dabah@fz-juelich.de, a.herten@fz-juelich.de

1) Motivation and Introduction

• Graph Edit Distance (GED): Measures the similarity of graphs by

quantifying the minimum cost of edit operations (insertion, deletion,

substitution) needed to transform one graph into another.

Given graphs g1 = (V1, E1, α1, β1) and g2 = (V2, E2, α2, β2), the

GED(g1, g2) = min
{o1,o2,...,ok}∈γ(g1,g2)

k∑
i=1

cost(oi)

where γ(g1, g2) denotes all possible edit paths.

• Applications: GED is used in fields like bioinformatics, computer vi-

sion, and pattern recognition, enabling tasks such as molecular struc-

ture comparison and image matching.

• Challenge: High complexity that increases exponentially with the size

of graphs, making efficient GED computation crucial for large graphs.

Proposed Solution: FAS-GED

• Goal: Develop a Fast, Accurate, and Scalable approach for GED com-

putation leveraging GPU architectures.

• Key Features:

– High accuracy comparable to exact methods with significantly re-

duced computation time.

– Efficient best-k elements retrieval on GPU to balance accu-

racy/scalability. A larger value of K prioritizes accuracy, while a

smaller value ofK enhances scalability.

– Efficient utilization of GPU capabilities to handle large graphs with

minimal host-device communication.

2) FAS-GED Methodology

FAS-GED explores the search tree level by level on GPUs and cuts off all

nodes with a ranking greater than a given parameter (K) [1].

• Three-Phase GPU Process:

– Branching Phase:

* Apply edit operations to expand the nodes at a given tree level.

* Efficiently leverage GPU parallelism for simultaneous node ex-

pansion and evaluation of the partial edit distance.

– Ranking Phase:

* Rank the expanded nodes using local and global ranking mech-

anisms within GPU blocks, exploiting atomic operations without

host intervention.

– Update Phase:

* Update primary data structures with the best K nodes’ data

based on the ranking.

• Benefits:

– Reduces host-device communication, significantly improving per-

formance.

– Scales efficiently with graph size in a linear complexity.

Update data structures
for iteration i+1 < |V1|

Branching and evaluation
of all nodes of level i

Local Ranking

0 k-1

GPU Block0 GPU Blockk-1

Thread0 Thread|v2|

PED0 PED|V2|

Thread0 Thread|v2|

PED0 PED|V2|

Local Ranking

Global Ranking kernel

Data-Copy kernel
copy data related to child node

with rank 0

Finding the best K
candidates

Data-Copy kernel
copy data related to child node

with rank k-1

Figure 1: FAS-GED GPU implementation.

3) Performance Evaluation

• Accuracy: FAS-GED achieves

the optimal edit distance in over

90% of cases with a deviation

less than 0.5% using synthetic

graphs with varying sizes and

densities.

• Speedup: Up to 55× speedup

over NetworkX library [2] for

small size graphs.

• Scalability: Support graph

sizes up to 1000 vertices,

with an excellent accuracy–

complexity trade-off.

• Approximate results: Demon-

strates robust performance

across diverse real-world

datasets compared to Beam

Search (BS) and Depth First

Search (DFS) state-of-the-art

methods.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Graph Density

18

19

20

21

22

Av
er

ag
e

Ed
it

Di
st

an
ce

Networkx
FAS-GED

0

10

20

30

40

50

De
vi

at
io

n
(%

) /
 S

pe
ed

up

Deviation (%)
Speedup

Figure 2: FAS-GED vs. NetworkX open source library.

GREC
 20

GREC
 Mix

CMU 30

MUTA
 20

MUTA
 30

MUTA
 40

MUTA
 50

MUTA
 60

MUTA
 70

MUTA
 Mix

Datasets

0

20

40

60

80

100

120

140

160

M
ea

n
Ed

it
Di

st
an

ce

32
26

96

18
25

43
50

65
73

87

37 37

132

24

37

50

69
79

120

141

40

28

171

31

42

63

78
87

113

101

Note: Lower is better

Mean Edit Distance by Method and Dataset
FAS-GED
BS10
DFS1

Figure 3: FAS-GED compared to BS and DFS1 results using real-world

datasets.

4) Optimization of FAS-GED

Hardware Optimization

• Improve the data layout for ef-

ficient memory access, up to

50% improvement over the non-

optimized version.

• FAS-GED achieves a 300×

speedup over its baseline CPU

version on a 48-core AMD Epyc

CPU.

• Bottleneck: Synchronization

overhead in top-k search, ac-

counting for 80% of execu-

tion time and explaining perfor-

mance of A100 to H100 GPUs.

V100 A100 H100
GPU Generations

0

5

10

15

20

25

30

35

Ti
m

e
(s

)

50%

40% 40%

Optimization
Non-Optimized FAS-GED
Optimized FAS-GED

Figure 4: FAS-GED Optimization and hardware scaling.

5) Application in Classification

• Enabling facst accurate GED

measurement for K-Nearest

Neighbor (KNN) classifier in

graph space.

• KNN/FAS-GED reaches similar

accuracy compared to sophis-

ticated Graph Neural Network

approaches (GNN_NDP [3] and

GNN_MEWISPool [4]) on Muta-

genicity dataset.

GNN_NDP GNN_MEWISPool KNN/FAS-GED
Models

0

20

40

60

80

100

Cl
as

sif
ica

tio
n

Ac
cu

ra
cy

 (%
)

Note: Higher is better

78% 80% 78%

Figure 5: KNN/FAS-GED vs. GNN for Graph Classification.

6) Conclusions

• Summary: FAS-GED significantly advances GED computation by bal-

ancing speed, accuracy, and scalability on GPU architectures.

• Future Work: Focuses on optimization and extending the approach to

very large graph sizes, while focusing on the application side.

References:

(1) A. Dabah, I. Chegrane et al., Pattern Recognit. Lett., 2021, 134, 46–57.

(2) A. A. Hagberg, D. A. Schult et al., NetworkX, Web Page, Accessed: 2024-05-

20, 2008.

(3) A. Nouranizadeh, M. Matinkia et al., arXiv preprint arXiv:2107.01410, 2021.

(4) F. M. Bianchi, D. Grattarola et al., IEEE Trans. on Neural Networks Learn. Syst.,

2020, 33, 2195–2207.

https://gitlab.jsc.fz-juelich.de/dabah2/ged-gpu

