
Many Cores, Many Models SC-W 2023, November 12–17, 2023, Denver, CO, USA

Many Cores, Many Models: GPU Programming Model vs. Vendor
Compatibility Overview

Andreas Herten
Forschungszentrum Jülich

Jülich Supercomputing Centre
Jülich, Germany

a.herten@fz-juelich.de

ABSTRACT
In recent history, GPUs became a key driver of compute perfor-
mance in HPC. With the installation of the Frontier supercomputer,
they became the enablers of the Exascale era; further largest-scale
installations are in progress (Aurora, El Capitan, JUPITER). But
the early-day dominance by NVIDIA and their CUDA program-
ming model has changed: The current HPC GPU landscape features
three vendors (AMD, Intel, NVIDIA), each with native and derived
programming models. The choices are ample, but not all models
are supported on all platforms, especially if support for Fortran is
needed; in addition, some restrictions might apply. It is hard for
scientific programmers to navigate this abundance of choices and
limits. This paper gives a guide by matching the GPU platforms
with supported programming models, presented in a concise table
and further elaborated in detailed comments. An assessment is
made regarding the level of support of a model on a platform.

KEYWORDS
GPU, GPGPU, Programming Models, HPC, AMD, Intel, NVIDIA,
CUDA, HIP, SYCL

ACM Reference Format:
Andreas Herten. 2023. Many Cores, ManyModels: GPU ProgrammingModel
vs. Vendor Compatibility Overview. In Workshops of The International Con-
ference on High Performance Computing, Network, Storage, and Analysis
(SC-W 2023), November 12–17, 2023, Denver, CO, USA. ACM, New York, NY,
USA, 8 pages. https://doi.org/10.1145/3624062.3624178

1 INTRODUCTION
Taking the TOP500 list of June 2023 as a reference [10], more than
60 % of the available FlOp/s are delivered by Graphics Processing
Units (GPUs). The devices were first installed in HPC systems in
the mid 2000s and steadily matured over the next decades. The
most-recent culmination came in 2022, when the first Exascale
supercomputer, Frontier at Oak Ridge National Lab, was added
to the TOP500 list, utilizing more than 37 000 GPUs to deliver
1194 PFlOp/s (Rmax) of compute performance – alone delivering
about 20 % of the entire list’s compute performance. Further largest-
scale installations using GPUs are planned or already on the way,
like Aurora (at Argonne National Lab), El Capitan (at Lawrence

SC-W 2023, November 12–17, 2023, Denver, CO, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Workshops of
The International Conference on High Performance Computing, Network, Storage, and
Analysis (SC-W 2023), November 12–17, 2023, Denver, CO, USA, https://doi.org/10.1145/
3624062.3624178.

Livermore National Lab), or JUPITER (at Jülich Supercomputing
Centre).

While the first years of GPU usage in HPC was dominated by
NVIDIA GPUs and NVIDIA’s CUDA programming model, the land-
scape significantly changed in the last years. Frontier utilizes AMD
GPUs (37 888× AMD Radeon Instinct MI250X) and Aurora uses
Intel GPUs (63 744× Intel Data Center GPU Max Series, codename
Ponte Vecchio); also El Capitan will use next-generation AMD GPUs
(AMD Radeon Instinct MI300A). Each GPU platform has a selected
major native programming model: CUDA for NVIDIA, HIP for
AMD, and SYCL for Intel1. They are augmented with further vendor-
or community-driven models, usually presenting higher-level ab-
stractions. Examples are OpenMP and OpenACC as the two major
directive-based models; Kokkos, RAJA, and Alpaka which enable
GPU programming through high-level abstractions for parallel al-
gorithms and data management; and Standard-based parallelism
which utilizes modern features of programming languages them-
selves to access GPUs. The key scientific programming language is
C++ (sometimes programmed in a plain C-style), but also Fortran
is still prevalent in many scientific applications. Also Python has
become a popular choice in recent years [8, 54]; as an even higher-
level, interpreted programming language it relies on backends in
lower-level languages – mostly C/C++ – and rather implements
interfaces.

Although the evolving combinatorial explosion of choices2 is
a good sign for the health of the GPU ecosystem, the field can at
times be hard to navigate – for established GPU developers but
especially for novice users. With the selection made in this paper,
more than 50 routes for programming a GPU device are identified
when no further limitations (pre-)exist. This work gives a guide
into the current GPU programming ecosystem, by categorizing
the individual possibilities in a concise table and explaining each
combination in detail.

The main contributions of this paper are the categories of rating
support of programming models on GPU devices in section 3, the
application in the overview table in Figure 1, and the accompany-
ing list of explanations in section 4, with many links to further
resources.

The paper is structured as follows: In section 3, the six rating
categories are explained in detail and some comments to themethod
are made. In section 4, the core of this paper, the overview table
(Figure 1), is presented and explained with detailed comments for

1Intel bundles their parallel programming infrastructure into oneAPI, which includes –
amongst others – DPC++, their SYCL implementation. Next to SYCL, also OpenMP is
a prominently promoted programming model by Intel.
2GPU platforms × programming models × programming languages

Author’s Version — Please Cite DOI 10.1145/3624062.3624178.

https://orcid.org/0000-0002-7150-2505
https://doi.org/10.1145/3624062.3624178
https://doi.org/10.1145/3624062.3624178
https://doi.org/10.1145/3624062.3624178
https://doi.org/10.1145/3624062.3624178
10.1145/3624062.3624178


SC-W 2023, November 12–17, 2023, Denver, CO, USA Andreas Herten

each possible choice. Section 5 shows limitations and caveats of the
table and methodology. Finally, section 6 concludes this paper.

2 RELATEDWORK
While no other work is known outlining and assessing the us-
age of programming models on certain GPU devices to the ex-
tent presented here, related work previously compared specific as-
pects or sub-sets, usually with a focus on performance. Hammond
et al. [19] compared performance for standard language parallelism
in Fortran, by using the BabelStream benchmarks. Markomano-
lis et al. [40] cast a wider net around applications, but focused
solely on the LUMI supercomputer. Hammond evaluated several
NVIDIA-compatible GPU programming models in [18]. A very
detailed comparison of GPU support through various OpenMP-
capable compilers was given at the 2022 ECP Community BOF
Days [50]. Deeper, more technical insights can be gained by dedi-
cated validation suites [24, 34]. Further examples are discussed in
section 4.

3 METHOD, CATEGORIES
Figure 1 matches the three GPU vendors AMD, Intel, and NVIDIA
(row) with programming models (columns). Each column is ad-
ditionally separated into two sub-columns for the two program-
ming language C++ and Fortran. The presented programming mod-
els are the three native models (CUDA, HIP, SYCL), the two ma-
jor directive-based models (OpenMP, OpenACC), two examples
of community-driven, higher-level models with foci on platform-
portability (Kokkos, Alpaka), and the upcoming GPU usage through
standard features in the programming language (Standard). In addi-
tion, support by Python is summarized for each platform. In total,
51 possible combinations are explored and explained in 44 unique
descriptions.

No restrictions are exposed regarding language version of C++
and Fortran, as it would add another level of complexity and is
usually not a limiting factor for scientists due to backward compat-
ibility. While C++ is required by most programming models, some
models can also be used in a C-like manner. For the sake of brevity,
this paper considers C++.

To assess and describe the 51 possible combinations, a review
of available literature and online resources was conducted. The
available information and its level of detail and coverage varies
significantly between the models; it is most extensive for the na-
tive models and sparsest for some community-driven, explorative
implementations. The combinations are assessed by this available
information and – to a limited extend – the experience of the author.
The paper strives to be objective and derives the rating with thor-
ough descriptions. Of course, classifying into six distinct categories
has some limitations, outlined within the descriptions themselves
and discussed further in section 5.

This work introduces six categories to assess the coverage of
a certain combination of programming model and language on a
respective GPU platform. The categories are indicated by symbols,
reaching from (full support) to (no support), with various
intermediate steps. The following list explains the categorizing
symbols and also names the categories for completeness.

The programming model for this language is fully supported on
this GPU platform by the vendor.The vendor provides complete
implementation of the combination and extensive documenta-
tion. The model is regularly updated and the vendor provides
support in case of errors. Category Name: full support
The combination of programming model and language is in-
directly, but comprehensively supported by the vendor of the
GPU device. This is usually achieved by (semi-)automatically
mapping/translating a foreign model to a native one. Category
Name: indirect good support
Model/language are supported on this GPU device by the ven-
dor, but the support is not (yet) comprehensive. Usually, the
model can be used for the majority of applications, but some
specific features are not available. Category Name: some sup-
port
Comprehensive support is available for this combination of
programming model and programming language on a GPU
device, but not by the vendor of the GPU device itself. Usu-
ally, higher-level models driven by the community implement
support and utilize vendor-native infrastructure in the back-
ground, unexposed to the user. Category Name: non-vendor
good support
Some very limited support is available for this programming
model and language on a certain GPU device.The support might
be indirect, through extensive effort by the user, and/or very
incomplete. Category Name: limited support
No direct support is available for the model/language on the
device. There are certainly ways to still utilize the device, like
creating custom headers and linking to libraries directly, or uti-
lizing ISO_C_BINDING in Fortran. Category Name: no support

The following section 4 lists the descriptions of each possible
combination, referring the categorizing symbols of Figure 1 with
reference numbers3. In each description, links to online resources
are overlaid as hyperlinks. The key references for an item are in-
cluded as entries in the bibliography.The three native programming
models (CUDA, HIP, SYCL) are explained in greatest details for their
main platform (NVIDIA, AMD, Intel GPU devices, respectively). At
times, descriptions for entries are similar. This is by choice due to
the encyclopedic nature of the document in which readers might
look up only single entries.

4 DESCRIPTIONS
1 NVIDIA • CUDA • C++: CUDA C/C++ is supported on NVIDIA
GPUs through the CUDA Toolkit. First released in 2007, the toolkit
covers nearly all aspects of the NVIDIA platform: an API for pro-
gramming (incl. language extensions), libraries, tools for profiling
and debugging, compiler, management tools, and more. The current
version is CUDA 12.2. Usually, when referring to CUDAwithout any
additional context, the CUDA API is meant. While incorporating
some Open Source components, the CUDA platform in its entirety
is proprietary and closed sourced. The low-level CUDA instruc-
tion set architecture is PTX, to which higher languages like the
CUDA C/C++ are translated to. PTX is compiled to SASS, the binary
code executed on the device. As it is the reference for platform, the
3In the PDF version of this document, both number can be clicked and move between
table and description.

Author’s Version — Please Cite DOI 10.1145/3624062.3624178.

https://developer.nvidia.com/cuda-toolkit
https://doi.org/10.1145/3624062.3624178
10.1145/3624062.3624178


Many Cores, Many Models SC-W 2023, November 12–17, 2023, Denver, CO, USA

CUDA HIP SYCL OpenACC OpenMP Standard Kokkos ALPAKA
C++ Fortran C++ Fortran C++ Fortran C++ Fortran C++ Fortran C++ Fortran C++ Fortran C++ Fortran Python

NVIDIA 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

AMD 18 19 20 4 21 6 22 23 24 25 26 27 28 14 29 16 30

Intel 31 32 33 34 35 6 36 37 38 39 40 41 42 14 43 16 44

Full vendor support
Indirect, but comprehensive support, by vendor
Vendor support, but not (yet) entirely compre-
hensive

Comprehensive support, but not by vendor
Limited, probably indirect support – but at least
some

No direct support available
C++ C++ (sometimes also C)
Fortran Fortran

Figure 1: Overview table comparing a selection of major GPU programming models with the current state of support by the
three vendors of dedicated HPC GPUs (AMD, Intel, NVIDIA) for C++ and Fortran. See section 3 for more detailed explanations
of the categories.

support for NVIDIA GPUs through CUDA C/C++ is very compre-
hensive. In addition to support through the CUDA toolkit, NVIDIA
GPUs can also be used by Clang, utilizing the LLVM toolchain to
emit PTX code and compile it subsequently. [45]
2 NVIDIA • CUDA • Fortran: CUDA Fortran, a proprietary For-
tran extension by NVIDIA, is supported on NVIDIA GPUs via the
NVIDIA HPC SDK (NVHPC). NVHPC implements most features of
the CUDAAPI in Fortran and is activated through the -cuda switch
in the nvfortran compiler. The CUDA extensions for Fortran are
modeled closely after the CUDA C/C++ definitions. In addition to
creating explicit kernels in Fortran, CUDA Fortran also supports
cuf kernels, a way to let the compiler generate GPU parallel code au-
tomatically. Very recently, CUDA Fortran support was also merged
into Flang, the LLVM-based Fortran compiler. [43]
3 NVIDIA • HIP • C++: HIP programs can directly use NVIDIA
GPUs via a CUDA backend. As HIP is strongly inspired by CUDA,
the mapping is relatively straight-forward; API calls are named
similarly (for example: hipMalloc() instead of cudaMalloc())
and keywords of the kernel syntax are identical. HIP also sup-
ports some CUDA libraries and creates interfaces to them (like
hipblasSaxpy() instead of cublasSaxpy()). To target NVIDIA
GPUs through the HIP compiler (hipcc), HIP_PLATFORM=nvidia
needs to be set in the environment. In order to initially create a HIP
code from CUDA, AMD offers the HIPIFY conversion tool. [4]
4 NVIDIA, AMD • HIP • Fortran: No Fortran version of HIP
exists; HIP is solely a C/C++ model. But AMD offers an extensive
set of ready-made interfaces to the HIP API and HIP and ROCm
libraries with hipfort (MIT-licensed). All interfaces implement C
functionality and CUDA-like Fortran extensions, for example to
write kernels, are available. [5]
5 NVIDIA • SYCL • C++: No direct support for SYCL is available
by NVIDIA, but SYCL can be used on NVIDIA GPUs through multi-
ple venues. First, SYCL can be used throughDPC++, anOpen-Source
LLVM-based compiler project led by Intel. The DPC++ infrastruc-
ture is also available through Intel's commercial oneAPI toolkit
(Intel oneAPI DPC++/C++) as a dedicated plugin. Upstreaming SYCL
support directly into LLVM is an ongoing effort, which started in
2019. Further, SYCL can be used via Open SYCL (previously called
hipSYCL), an independently developed SYCL implementation, us-
ing NVIDIA GPUs either through the CUDA support of LLVM or
the nvc++ compiler of NVHPC. A third popular possibility was the
NVIDIA GPU support in ComputeCpp of CodePlay; though the

product became unsupported in September 2023. In case LLVM
is involved, SYCL implementations can rely on CUDA support in
LLVM, which needs the CUDA toolkit available for the final com-
pilations parts beyond PTX. In order to translate a CUDA code to
SYCL, Intel offers the SYCLomatic conversion tool. [1, 32]
6 NVIDIA, AMD, Intel • SYCL • Fortran: SYCL is a C++-based
programming model (C++17) and by its nature does not support
Fortran. Also, no pre-made bindings are available. [17]
7 NVIDIA • OpenACC • C++: OpenACC C/C++ on NVIDIA
GPUs is supported most extensively through the NVIDIA HPC
SDK. Beyond the bundled libraries, frameworks, and other models,
the NVIDIA HPC SDK also features the nvc/nvc++ compilers, in
which OpenACC support can be enabled with the -acc -gpu. The
support of OpenACC in this vendor-delivered compiler is very
comprehensive, it conforms to version 2.7 of the specification. A
variety of compile options are available to modify the compilation
process. In addition to NVIDIA HPC SDK, good support is also
available in GCC since GCC 5.0, supporting OpenACC 2.6 through
the nvptx architecture. The compiler switch to enable OpenACC
in gcc/g++ is -fopenacc, further options are available. Further,
the Clacc compiler implements OpenACC support into the LLVM
toolchain, adapting the Clang frontend. As a central design aspect, it
translates OpenACC to OpenMP as part of the compilation process.
OpenACC can be activated in a Clacc-clang via -fopenacc, and
further compiler options exist, mostly leveraging OpenMP options.
A recent study by Jarmusch et al. compared these compilers for
coverage of the OpenACC 3.0 specification. [13, 16, 34, 47]
8 NVIDIA • OpenACC • Fortran: Support of OpenACC Fortran
on NVIDIA GPUs is similar to OpenACC C/C++, albeit not identical.
First, NVIDIA HPC SDK supports OpenACC in Fortran through
the included nvfortran compiler, with options like for the C/C++
compilers. In addition, also GCC supports OpenACC through the
gfortran compiler with identical compiler options to the C/C++
compilers. Further, similar to OpenACC support in LLVM for C/C++
through Clacc contributions, the LLVM frontend for Fortran, Flang
(the successor of F18, not classic Flang), supports OpenACC as
well. Support was initially contributed through the Flacc project
and now resides in the main LLVM project. Finally, the HPE Cray
Programming Environment supports OpenACC Fortran; in ftn-
hacc. [9, 16, 47]
9 NVIDIA • OpenMP • C++: OpenMP in C/C++ is supported
on NVIDIA GPUs (Offloading) through multiple venues, similarly

Author’s Version — Please Cite DOI 10.1145/3624062.3624178.

https://llvm.org/docs/CompileCudaWithLLVM.html
https://developer.nvidia.com/hpc-sdk
https://reviews.llvm.org/D150159
https://reviews.llvm.org/D150159
https://github.com/ROCm-Developer-Tools/HIP
https://github.com/ROCm-Developer-Tools/HIPIFY
https://github.com/ROCmSoftwarePlatform/hipfort
https://www.khronos.org/sycl/
https://github.com/intel/llvm/blob/sycl/sycl/doc/GetStartedGuide.md#build-dpc-toolchain-with-support-for-nvidia-cuda
https://github.com/intel/llvm
https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compiler.html
https://developer.codeplay.com/products/oneapi/nvidia/2023.2.1/guides/get-started-guide-nvidia
https://github.com/intel/llvm/issues/49
https://lists.llvm.org/pipermail/cfe-dev/2019-January/060811.html
https://lists.llvm.org/pipermail/cfe-dev/2019-January/060811.html
https://github.com/OpenSYCL/OpenSYCL/
https://github.com/codeplaysoftware/sycl-for-cuda/tree/cuda
https://developer.codeplay.com/products/computecpp/ce/home/
https://developer.codeplay.com/products/computecpp/ce/home/
https://github.com/oneapi-src/SYCLomatic
https://developer.nvidia.com/hpc-sdk
https://developer.nvidia.com/hpc-sdk
https://docs.nvidia.com/hpc-sdk/compilers/hpc-compilers-user-guide/index.html#acc-use
https://gcc.gnu.org/wiki/OpenACC
https://csmd.ornl.gov/project/clacc
https://ieeexplore.ieee.org/document/10029456
https://developer.nvidia.com/hpc-sdk
https://gcc.gnu.org/wiki/OpenACC
https://flang.llvm.org/docs/
https://flang.llvm.org/docs/OpenACC.html
https://ieeexplore.ieee.org/document/9651310
https://www.hpe.com/psnow/doc/a50002303enw
https://www.hpe.com/psnow/doc/a50002303enw
https://cpe.ext.hpe.com/docs/cce/man7/intro_openacc.7.html
https://doi.org/10.1145/3624062.3624178
10.1145/3624062.3624178


SC-W 2023, November 12–17, 2023, Denver, CO, USA Andreas Herten

to OpenACC. First, the NVIDIA HPC SDK supports OpenMP GPU
offloading in both nvc and nvc++, albeit only a subset of the entire
OpenMP 5.0 standard (see the documentation for supported/un-
supported features). The key compiler option is -mp. Also in GCC,
OpenMP offloading can be used to NVIDIA GPUs; the compiler
switch is -fopenmp, with options delivered through -foffload
and -foffload-options. GCC currently supports OpenMP 4.5 en-
tirely, while OpenMP features of 5.0, 5.1, and, 5.2 are currently
being implemented. Similarly in Clang, where OpenMP offload-
ing to NVIDIA GPUs is supported and enabled through -fopenmp
-fopenmp-targets=nvptx64, with offload architectures selected
via --offload-arch=native (or similar). Clang implements nearly
all OpenMP 5.0 features and most of OpenMP 5.1/5.2. In the HPE
Cray Programming Environment, a subset of OpenMP 5.0/5.1 is
supported for NVIDIA GPUs. It can be activated through -fopenmp.
Also AOMP, AMD's Clang/LLVM-based compiler, supports NVIDIA
GPUs. Support of OpenMP features in the compilers was recently
discussed in the OpenMP ECP BoF 2022. [14, 15, 23, 47]
10 NVIDIA • OpenMP • Fortran: OpenMP in Fortran is sup-
ported on NVIDIA GPUs nearly identical to C/C++. NVIDIA HPC
SDK's nvfortran implements support, GCC's gfortran, LLVM's
Flang (through -mp, and only when Flang is compiled via Clang),
and also the HPE Cray Programming Environment. [14, 23, 39, 47]
11 NVIDIA • Standard • C++: Standard language parallelism of
C++, namely algorithms and data structures of the parallel STL, is
supported on NVIDIA GPUs through the nvc++ compiler of the
NVIDIA HPC SDK.The key compiler option is -stdpar=gpu, which
enables offloading of parallel algorithms to the GPU. Also, currently
Open SYCL is in the process of implementing support for pSTL algo-
rithms, enabled via --hipsycl-stdpar. Further, NVIDIA GPUs can
be targeted from Intel's DPC++ compiler, enabling usage of pSTL
algorithms implemented in Intel's Open Source oneDPL (oneAPI
DPC++ Library) on NVIDIA GPUs. Finally, a current proposal in
the LLVM community aims at implementing pSTL support through
an OpenMP backend. [1, 30, 47]
12 NVIDIA • Standard • Fortran: Standard language parallelism
of Fortran, mainly do concurrent, is supported on NVIDIA GPUs
through the nvfortran compiler of the NVIDIA HPC SDK. As
for the C++ case, it is enabled through the -stdpar=gpu compiler
option. [47]
13 NVIDIA • Kokkos • C++: Kokkos supports NVIDIA GPUs in
C++. Kokkos has multiple backends available with NVIDIA GPU
support: a native CUDA C/C++ backend (using nvcc), an NVIDIA
HPC SDK backend (using CUDA support in nvc++), and a Clang
backend, using either Clang's CUDA support directly or via the
OpenMP offloading facilities (via clang++). [55]
14 NVIDIA, AMD, Intel • Kokkos • Fortran: Kokkos is a C++
programming model, but an official compatibility layer for Fortran
(Fortran Language Compatibility Layer, FLCL) is available. Through
this layer, GPUs can be used as supported by Kokkos C++. [55]
15 NVIDIA • ALPAKA • C++: Alpaka supports NVIDIA GPUs in
C++ (C++17), either through the NVIDIA CUDA C/C++ compiler
nvcc or LLVM/Clang's support of CUDA in clang++. [41]

16 NVIDIA, AMD, Intel • ALPAKA • Fortran: Alpaka is a C++
programming model and no ready-made Fortran support exists.
[41]
17 NVIDIA • etc • Python: Using NVIDIA GPUs from Python
code can be achieved through multiple venues. NVIDIA itself offers
CUDA Python, a package delivering low-level interfaces to CUDA
C/C++. Typically, code is not directly written using CUDA Python,
but rather CUDA Python functions as a backend for higher level
models. CUDA Python is available on PyPI as cuda-python. An al-
ternative to CUDA Python from the community is PyCUDA, which
adds some higher-level features and functionality and comes with
its own C++ base layer. PyCUDA is available on PyPI as pycuda.
The most well-known, higher-level abstraction is CuPy, which im-
plements primitives known from Numpy with GPU support, offers
functionality for defining custom kernels, and bindings to libraries.
CuPy is available on PyPI as cupy-cuda12x (for CUDA 12.x). Two
packages arguably providing even higher abstractions are Numba
and CuNumeric. Numba offers access to NVIDIA GPUs and fea-
tures acceleration of functions through Python decorators (functions
wrapping functions); it is available as numba on PyPI. cuNumeric, a
project by NVIDIA, allows to access the GPU via Numpy-inspired
functions (like CuPy), but utilizes the Legate library to transparently
scale to multiple GPUs. [36, 37, 44, 46, 48]
18 AMD • CUDA • C++: While CUDA is not directly supported
on AMD GPUs, it can be translated to HIP through AMD's HIPIFY.
Using hipcc and HIP_PLATFORM=amd in the environment, CUDA-
to-HIP-translated code can be executed. [4]
19 AMD • CUDA • Fortran: No direct support for CUDA Fortran
on AMD GPUs is available, but AMD offers a source-to-source
translator, GPUFORT, to convert some CUDA Fortran to either
Fortran with OpenMP (via AOMP) or Fortran with HIP bindings and
extracted C kernels (via hipfort). As stated in the project repository,
the covered functionality is driven by use-case requirements; the
last commit is two years old. [3]
20 AMD • HIP • C++: HIP C++ is the native programming model
for AMD GPUs and, as such, fully supports the devices. It is part
of AMD's GPU-targeted ROCm platform, which includes compil-
ers, libraries, tool, and drivers and mostly consists of Open Source
Software. HIP code can be compiled with hipcc, utilizing the cor-
rect environment variables (like HIP_PLATFORM=amd) and compiler
options (like --offload-arch=gfx90a). hipcc is a compiler driver
(wrapper script) which assembles the correct compilation string,
finally calling AMD's Clang compiler to generate host/device code
(using the AMDGPU backend). [4]
21 AMD • SYCL • C++: No direct support for SYCL is available
by AMD for their GPU devices. But like for the NVIDIA ecosys-
tem, SYCL C++ can be used on AMD GPUs through third-party
software. First, Open SYCL (previously hipSYCL) supports AMD
GPUs, relying on HIP/ROCm support in Clang. All available inter-
nal compilation models can target AMD GPUs. Second, also AMD
GPUs can be targeted through both DPC++, Intel's LLVM-based
Open Source compiler, and the commercial version included in
the oneAPI toolkit (via an AMD ROCm plugin). In comparison to
SYCL support for CUDA, no conversion tool like SYCLomatic exists.
[1, 32]

Author’s Version — Please Cite DOI 10.1145/3624062.3624178.

https://docs.nvidia.com/hpc-sdk/compilers/hpc-compilers-user-guide/index.html#openmp-use
https://docs.nvidia.com/hpc-sdk/compilers/hpc-compilers-user-guide/index.html#openmp-use
https://docs.nvidia.com/hpc-sdk/compilers/hpc-compilers-user-guide/index.html#openmp-subset
https://docs.nvidia.com/hpc-sdk/compilers/hpc-compilers-user-guide/index.html#openmp-subset
https://gcc.gnu.org/wiki/Offloading
https://gcc.gnu.org/onlinedocs/gcc/C-Dialect-Options.html#index-foffload
https://gcc.gnu.org/onlinedocs/gcc/C-Dialect-Options.html#index-foffload
https://gcc.gnu.org/onlinedocs/gcc-13.1.0/libgomp/OpenMP-Implementation-Status.html
https://gcc.gnu.org/onlinedocs/gcc-13.1.0/libgomp/OpenMP-Implementation-Status.html
https://clang.llvm.org/docs/OffloadingDesign.html
https://clang.llvm.org/docs/OffloadingDesign.html
https://clang.llvm.org/docs/OpenMPSupport.html#openmp-implementation-details
https://clang.llvm.org/docs/OpenMPSupport.html#openmp-implementation-details
https://cpe.ext.hpe.com/docs/cce/man7/intro_openmp.7.html
https://cpe.ext.hpe.com/docs/cce/man7/intro_openmp.7.html
https://github.com/ROCm-Developer-Tools/aomp/
https://www.openmp.org/wp-content/uploads/2022_ECP_Community_BoF_Days-OpenMP_RoadMap_BoF.pdf
https://docs.nvidia.com/hpc-sdk/compilers/hpc-compilers-user-guide/index.html#openmp-use
https://docs.nvidia.com/hpc-sdk/compilers/hpc-compilers-user-guide/index.html#openmp-use
https://gcc.gnu.org/wiki/openmp
https://flang.llvm.org/docs/
https://flang.llvm.org/docs/
https://flang.llvm.org/docs/GettingStarted.html#openmp-target-offload-build
https://cpe.ext.hpe.com/docs/cce/man7/intro_openmp.7.html
https://docs.nvidia.com/hpc-sdk/compilers/c++-parallel-algorithms/index.html
https://docs.nvidia.com/hpc-sdk/compilers/c++-parallel-algorithms/index.html
https://github.com/OpenSYCL/OpenSYCL/pull/1088
https://github.com/OpenSYCL/OpenSYCL/pull/1088
https://intel.github.io/llvm-docs/GetStartedGuide.html#build-dpc-toolchain-with-support-for-nvidia-cuda
https://intel.github.io/llvm-docs/GetStartedGuide.html#build-dpc-toolchain-with-support-for-nvidia-cuda
https://github.com/oneapi-src/oneDPL
https://discourse.llvm.org/t/rfc-openmp-offloading-backend-for-c-parallel-algorithms/73468
https://discourse.llvm.org/t/rfc-openmp-offloading-backend-for-c-parallel-algorithms/73468
https://developer.nvidia.com/blog/accelerating-fortran-do-concurrent-with-gpus-and-the-nvidia-hpc-sdk/
https://github.com/kokkos/kokkos
https://kokkos.github.io/kokkos-core-wiki/requirements.html
https://docs.nersc.gov/development/programming-models/kokkos/
https://docs.nersc.gov/development/programming-models/kokkos/
https://github.com/kokkos/kokkos-fortran-interop
https://github.com/alpaka-group/alpaka
https://github.com/NVIDIA/cuda-python
https://pypi.org/project/cuda-python/
https://github.com/inducer/pycuda
https://pypi.org/project/pycuda/
https://cupy.dev/
https://pypi.org/project/cupy-cuda12x/
http://numba.pydata.org/
https://pypi.org/project/numba/
https://github.com/nv-legate/cunumeric
https://github.com/nv-legate/legate.core
https://github.com/ROCm-Developer-Tools/HIPIFY
https://github.com/ROCmSoftwarePlatform/gpufort
https://github.com/ROCm-Developer-Tools/aomp
https://github.com/ROCmSoftwarePlatform/hipfort
https://github.com/ROCmSoftwarePlatform/gpufort#limitations
https://github.com/ROCm-Developer-Tools/HIP
https://rocm.docs.amd.com/en/latest/
https://github.com/ROCm-Developer-Tools/HIPCC
https://github.com/RadeonOpenCompute/llvm-project
https://llvm.org/docs/AMDGPUUsage.html
https://github.com/OpenSYCL/OpenSYCL
https://github.com/OpenSYCL/OpenSYCL/blob/develop/doc/compilation.md
https://github.com/OpenSYCL/OpenSYCL/blob/develop/doc/compilation.md
https://github.com/intel/llvm/blob/sycl/sycl/doc/GetStartedGuide.md#build-dpc-toolchain-with-support-for-hip-amd
https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compiler.html
https://developer.codeplay.com/products/oneapi/amd/2023.2.1/guides/get-started-guide-amd
https://doi.org/10.1145/3624062.3624178
10.1145/3624062.3624178


Many Cores, Many Models SC-W 2023, November 12–17, 2023, Denver, CO, USA

22 AMD • OpenACC • C++: OpenACC C/C++ is not supported
by AMD itself, but third-party support is available for AMD GPUs
through GCC or Clacc (similarly to their support of OpenACC
C/C++ for NVIDI GPUS). In GCC, OpenACC support can be ac-
tivated through -fopenacc, and further specified for AMD GPUs
with, for example, -foffload=amdgcn-amdhsa="-march=gfx906".
Clacc also supports OpenACC C/C++ on AMD GPUs by translating
OpenACC to OpenMP and using LLVM's AMD support. The en-
abling compiler switch is -fopenacc, and AMD GPU targets can be
further specified by, for example, -fopenmp-targets=amdgcn-amd-
amdhsa. Intel's OpenACC to OpenMP source-to-source translator
can also be used for AMD's platform. [13, 16]
23 AMD • OpenACC • Fortran: No native support for OpenACC
onAMDGPUs for Fortran is available, but AMD supplies GPUFORT,
a research project to source-to-source translate OpenACC Fortran
to either Fortran with added OpenMP or Fortran with HIP bindings
and extracted C kernels (using hipfort). The covered functionality
of GPUFORT is driven by use-case requirements, the last commit
is two years old. Support for OpenACC Fortran is also available by
the community through GCC (gfortran) and upcoming in LLVM
(Flacc). Also the HPE Cray Programming Environment supports
OpenACC Fortran on AMD GPUs. In addition, the translator tool to
convert OpenACC source to OpenMP source by Intel can be used.
[3, 9, 16]
24 AMD • OpenMP • C++: AMD offers AOMP, a dedicated,
Clang-based compiler for using OpenMP C/C++ on AMD GPUs
(offloading). AOMP is usually shipped with ROCm. The compiler
supports most OpenMP 4.5 and some OpenMP 5.0 features. Since
the compiler is Clang-based, the usual Clang compiler options ap-
ply (-fopenmp to enable OpenMP parsing, and others). Also in the
upstream Clang compiler, AMD GPUs can be targeted through
OpenMP; as outlined for NVIDIA GPUs, the support for OpenMP
5.0 is nearly complete, and support for OpenMP 5.1/5.2 is com-
prehensive. In addition, the HPE Cray Programming Environment
supports OpenMP on AMD GPUs. [2, 23, 50]
25 AMD • OpenMP • Fortran: Through AOMP, AMD supports
OpenMP offloading to AMD GPUs in Fortran, using the flang exe-
cutable and Clang-typical compiler options (foremost -fopenmp).
Support for AMD GPUs is also available through the HPE Cray
Programming Environment. [2, 23]
26 AMD • Standard • C++:AMD does not yet provide production-
grade support for Standard-language parallelism in C++ for their
GPUs. Currently under development is roc-stdpar (ROCm Stan-
dard Parallelism Runtime Implementation), which aims to supply
pSTL algorithms on the GPU and merge the implementation with
upstream LLVM. Support for GPU-parallel algorithms is enabled
with -stdpar. An alternative proposal in the LLVM community
aims to support the pSTL via an OpenMP backend. Also Open
SYCL is in the process of creating support for C++ parallel algo-
rithms via a --hipsycl-stdpar switch. By using Open SYCL's
backends, also AMD GPUs are supported. Intel provides the Open
Source oneDPL (oneAPI DPC++ Library) which implements pSTL
algorithms through the DPC++ compiler (see also C++ Standard
Parallelism for Intel GPUs). DPC++ has experimental support for
AMD GPUs. [1, 6, 30]

27 AMD • Standard • Fortran:There is no (known)way to launch
Standard-based parallel algorithms in Fortran on AMD GPUs.
28 AMD • Kokkos • C++: Kokkos supports AMD GPUs in C++
mainly through the HIP/ROCm backend. Also, an OpenMP offload-
ing backend is available. [55]
29 AMD • ALPAKA • C++: Alpaka supports AMD GPUs in C++
through HIP or through an OpenMP backend. [41]
30 AMD • etc • Python: AMD does not officially support GPU
programming with Python, but third-party solutions are available.
CuPy experimentally supports AMDGPUs/ROCm.The package can
be found on PyPI as cupy-rocm-5-0. Numba once had support for
AMD GPUs, but it is not maintained anymore. Low-level bindings
from Python to HIP exist, for example PyHIP (available as pyhip-
interface on PyPI). Bindings to OpenCL also exist (PyOpenCL).
[44]
31 Intel • CUDA • C++: Intel itself does not support CUDA C/C++
on their GPUs. They offer SYCLomatic, though, an Open Source
tool to translate CUDA code to SYCL code, allowing it to run on
Intel GPUs. The commercial variant of SYCLomatic is called the
DPC++ Compatibility Tool and bundled with oneAPI toolkit. The
community project chipStar (previously called CHIP-SPV, recently
released a 1.0 version) allows to target Intel GPUs from CUDA
C/C++ code by using the CUDA support in Clang. chipStar delivers
a Clang-wrapper, cuspv, which replaces calls to nvcc. Also ZLUDA
exists, which implements CUDA support for Intel GPUs; it is not
maintained anymore, though. [29, 31, 56]
32 Intel • CUDA • Fortran: No direct support exists for CUDA
Fortran on Intel GPUs. A simple example to bind SYCL to a (CUDA)
Fortran program (via ISO C BINDING) can be found on GitHub.
33 Intel • HIP • C++: No native support for HIP C++ on Intel
GPUs exists. The Open Source third-party project chipStar (previ-
ously called CHIP-SPV), though, supports HIP on Intel GPUs by
mapping it to OpenCL or Intel's Level Zero runtime. The compiler
uses an LLVM-based toolchain and relies on its HIP and SPIR-V
functionality. [56]
34 Intel • HIP • Fortran: HIP for Fortran does not exist, and also
no translation efforts for Intel GPUs.
35 Intel • SYCL • C++: SYCL is a C++17-based standard and se-
lected by Intel as the prime programming model for Intel GPUs.
Intel implements SYCL support for their GPUs via DPC++, an LLVM-
based compiler toolchain. Currently, Intel maintains an own fork of
LLVM, but plans to upstream the changes to the main LLVM reposi-
tory. Based on DPC++, Intel releases a commercial Intel oneAPI
DPC++ compiler as part of the oneAPI toolkit. The third-party
project Open SYCL also supports Intel GPUs, by leveraging/creating
LLVM support (either SPIR-V or Level Zero). A previous solution
for targeting Intel GPUs from SYCL was ComputeCpp of CodePlay.
The project became unsupported in September 2023 (in favor of
implementations to the DPC++ project). [1, 29, 32]
36 Intel • OpenACC • C++: No direct support for OpenACC
C/C++ is available for Intel GPUs. Intel offers a Python-based tool
to translate source files with OpenACC C/C++ to OpenMP C/C++,
the Application Migration Tool for OpenACC to OpenMP API . [28]

Author’s Version — Please Cite DOI 10.1145/3624062.3624178.

https://gcc.gnu.org/wiki/Offloading
https://csmd.ornl.gov/project/clacc
/%22https://github.com/intel/intel-application-migration-tool-for-openacc-to-openmp/%22
https://github.com/ROCmSoftwarePlatform/gpufort
https://github.com/ROCmSoftwarePlatform/hipfort
https://gcc.gnu.org/onlinedocs/gfortran/OpenACC.html
https://ieeexplore.ieee.org/document/9651310
https://ieeexplore.ieee.org/document/9651310
https://cpe.ext.hpe.com/docs/cce/man7/intro_openacc.7.html
https://cpe.ext.hpe.com/docs/cce/man7/intro_openacc.7.html
https://github.com/intel/intel-application-migration-tool-for-openacc-to-openmp
https://github.com/intel/intel-application-migration-tool-for-openacc-to-openmp
https://github.com/ROCm-Developer-Tools/aomp
https://www.exascaleproject.org/wp-content/uploads/2022/02/Elwasif-ECP-sollve_vv_final.pdf
https://clang.llvm.org/docs/OffloadingDesign.html
https://clang.llvm.org/docs/OffloadingDesign.html
https://cpe.ext.hpe.com/docs/cce/man7/intro_openmp.7.html
https://github.com/ROCm-Developer-Tools/aomp
https://cpe.ext.hpe.com/docs/cce/man7/intro_openmp.7.html
https://cpe.ext.hpe.com/docs/cce/man7/intro_openmp.7.html
https://github.com/ROCmSoftwarePlatform/roc-stdpar
https://discourse.llvm.org/t/rfc-adding-c-parallel-algorithm-offload-support-to-clang-llvm/72159
https://discourse.llvm.org/t/rfc-adding-c-parallel-algorithm-offload-support-to-clang-llvm/72159
https://discourse.llvm.org/t/rfc-openmp-offloading-backend-for-c-parallel-algorithms/73468
https://github.com/OpenSYCL/OpenSYCL/pull/1088
https://github.com/OpenSYCL/OpenSYCL/pull/1088
https://github.com/oneapi-src/oneDPL
https://oneapi-src.github.io/oneDPL/parallel_api_main.html
https://oneapi-src.github.io/oneDPL/parallel_api_main.html
https://intel.github.io/llvm-docs/GetStartedGuide.html#build-dpc-toolchain-with-support-for-hip-amd
https://intel.github.io/llvm-docs/GetStartedGuide.html#build-dpc-toolchain-with-support-for-hip-amd
https://github.com/kokkos/kokkos
https://github.com/alpaka-group/alpaka
https://docs.cupy.dev/en/latest/install.html#using-cupy-on-amd-gpu-experimental
https://numba.pydata.org/numba-doc/latest/roc/index.html
https://numba.pydata.org/numba-doc/latest/roc/index.html
https://numba.readthedocs.io/en/stable/release-notes.html#version-0-54-0-19-august-2021
https://github.com/jatinx/PyHIP
https://documen.tician.de/pyopencl/
https://github.com/oneapi-src/SYCLomatic
https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compatibility-tool.html
https://github.com/CHIP-SPV/chipStar
https://github.com/CHIP-SPV/chipStar/blob/main/docs/Using.md#compiling-cuda-application-directly-with-chipstar
https://github.com/vosen/ZLUDA
https://github.com/codeplaysoftware/SYCL-For-CUDA-Examples/tree/master/examples/fortran_interface
https://github.com/CHIP-SPV/chipStar
https://github.com/CHIP-SPV/chipStar/blob/main/docs/Using.md#compiling-a-hip-application-using-chipstar
https://www.khronos.org/sycl/
https://github.com/intel/llvm
https://lists.llvm.org/pipermail/cfe-dev/2019-January/060811.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compiler.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compiler.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/toolkits.html
https://developer.codeplay.com/products/computecpp/ce/home/
https://github.com/intel/intel-application-migration-tool-for-openacc-to-openmp
https://doi.org/10.1145/3624062.3624178
10.1145/3624062.3624178


SC-W 2023, November 12–17, 2023, Denver, CO, USA Andreas Herten

37 Intel • OpenACC • Fortran: Also for OpenACC Fortran, no
direct support is available for Intel GPUs. Intel's source-to-source
translation tool from OpenACC to OpenMP also supports Fortran,
though. [28]
38 Intel • OpenMP • C++:OpenMP is a second key programming
model for Intel GPUs and well-supported by Intel. For C++, the
support is built into the commercial version of DPC++/C++, Intel
oneAPI DPC++/C++. All OpenMP 4.5 and most OpenMP 5.0 and
5.1 features are supported. OpenMP can be enabled through the
-qopenmp compiler option of icpx; a suitable offloading target can
be given via -fopenmp-targets=spir64. [29]
39 Intel • OpenMP • Fortran: OpenMP in Fortran is Intel's main
selected route to bring Fortran applications to their GPUs. OpenMP
offloading in Fortran is supported through Intel's Fortran Compiler
ifx (the new LLVM-based version, not the Fortran Compiler Clas-
sic), part of the oneAPI HPC Toolkit. Similarly to C++, OpenMP
offloading can be enabled through a combination of -qopenmp and
-fopenmp-targets=spir64. [29]
40 Intel • Standard • C++: Intel supports C++ standard paral-
lelism (pSTL) through the Open Source oneDPL (oneAPI DPC++
Library), also available as part of the oneAPI toolkit. It implements
the pSTL on top of the DPC++ compiler, algorithms, data structures,
and policies live in the oneapi::dpl:: namespace. In addition,
Open SYCL is current adding support for C++ parallel algorithms,
to be enabled via the --hipsycl-stdpar compiler option. [30]
41 Intel • Standard • Fortran: Standard language parallelism
of Fortran is supported by Intel on their GPUs through the Intel
Fortran Compiler ifx (the new, LLVM-based compiler, not the
Classic version), part of the oneAPI HPC toolkit. In the oneAPI
update 2022.1, the do concurrent support was added and extended
in further releases. It can be used via the -qopenmp compiler option
together with -fopenmp-target-do-concurrent and -fopenmp-
targets=spir64. [29]
42 Intel • Kokkos • C++: No direct support by Intel for Kokkos is
available, but Kokkos supports Intel GPUs through an experimental
SYCL backend. [55]
43 Intel • ALPAKA • C++: Since v.0.9.0, Alpaka contains experi-
mental SYCL support with which Intel GPUs can be targeted. Also,
Alpaka can fall back to an OpenMP backend.
44 Intel • etc • Python: Intel GPUs can be used from Python
through three notable packages. First, Intel's Data Parallel Control
(dpctl) implements low-level Python bindings to SYCL functionality.
It is available on PyPI as dpctl. Second, a higher level, Intel's Data-
parallel Extension to Numba (numba-dpex) supplies an extension to
the JIT functionality of Numba to support Intel GPUs. It is available
from Anaconda as numba-dpex. Finally, and arguably highest level,
Intel's Data Parallel Extension for Numpy (dpnp) builds up on the
Numpy API and extends some functions with Intel GPU support. It
is available on PyPI as dpnp, although latest versions appear to be
available only on GitHub. [25–27]

5 DISCUSSION
While the possible combinations were explained extensively and the
given ratings motivated thoroughly, some limitations and caveats
exist.

Model Selection. The most prominent limitation is the selection
of programming models. CUDA, HIP, SYCL, OpenACC, OpenMP,
Standard Parallelism, Kokkos, Alpaka, and Python were selected for
their prevalence in the HPC community – and to focus the scope
of this work. But of course, there are further programming models
available and used in the community. The most notable exclusion is
certainly RAJA [52]. The choice for omitting was made because it is
similar in spirit to, albeit not as popular as Kokkos4. OpenCL [53]
is a further important GPU programming model, but it has never
gained much traction in the HPC-GPU space, mostly due to the
lukewarm support by NVIDIA. Other models exist, like HPX [35]
(which is similar to pSTL support, arguably more extensive, but less
standard) or C++AMP [42] (which was deprecated in 2022). In prin-
ciple, also the core of PyTorch [51], libtorch, can be used as a form
of programming model. No compatibility libraries were included
either, like the libompx project [7] which prototypes implementing
vendor-agnostic pSTL-like algorithms.

Performance Evaluation. A second important limitation is the lack
of evaluation of performance. As shown above, many models exist
and can target the various GPU types, partly even through differ-
ent backends. Assessing the level of support, as done here, is at
times already challenging; partly even dedicated test suites exist
(for example for OpenACC [24, 33] or OpenMP [24, 49]). Judging
the performance fairly is even more involved, as a representative
selection of micro-benchmarks would need to be ported to the
models. For sub-sets of the presented models, performance com-
parisons do exist. For example by Hammond [18], who compares
many NVIDIA-GPU-compatible programming models (and even
various implementation routes). Frequently, application-specific
use-cases are evaluated on two or more models/devices. An ex-
ample is by Lin et al. [38], comparing performance of a physics
simulation between Kokkos, SYCL, and OpenMP. Closest to an per-
formance overview certainly gives the BabelStream project [12],
although only for a STREAM-like algorithm; an example of a recent
performance-comparing publication is [11].

Topicality. Parts of the field are rapidly evolving. For example, the
support for C++ standard parallelism on AMD GPUs made great
progress in the past year, and now multiple venues exist. Much of
the support is driven by the community, especially for the AMD
platform, and it can be hard to assess the current status. In addi-
tion, proper documentation sometimes does not exists (yet) and
one needs to review the source code. At times, some features are
not even advertised in the documentation (like the pSTL support
on NVIDIA/AMD GPUs through DPC++). The downside of this
evolving field are unmaintained models. For example, it is unclear
if GPUFORT [3] is still officially supported by AMD. This paper can
hence only be seen current at the time of submission.

4Although GitHub Stars are inherently a flawed metric, RAJA has about one-third as
many stars as Kokkos

Author’s Version — Please Cite DOI 10.1145/3624062.3624178.

https://github.com/intel/intel-application-migration-tool-for-openacc-to-openmp
https://github.com/intel/intel-application-migration-tool-for-openacc-to-openmp
https://www.intel.com/content/www/us/en/develop/documentation/get-started-with-cpp-fortran-compiler-openmp/top.html
https://www.intel.com/content/www/us/en/developer/articles/technical/openmp-features-and-extensions-supported-in-icx.html
https://www.intel.com/content/www/us/en/developer/articles/technical/openmp-features-and-extensions-supported-in-icx.html
https://www.intel.com/content/www/us/en/docs/fortran-compiler/developer-guide-reference/2023-2/overview.html
https://www.intel.com/content/www/us/en/docs/fortran-compiler/developer-guide-reference/2023-2/overview.html
https://oneapi-src.github.io/oneDPL/index.html
https://oneapi-src.github.io/oneDPL/parallel_api_main.html
https://oneapi-src.github.io/oneDPL/parallel_api_main.html
https://github.com/OpenSYCL/OpenSYCL/pull/1088
https://www.intel.com/content/www/us/en/developer/articles/release-notes/fortran-compiler-release-notes.html
https://www.intel.com/content/www/us/en/developer/articles/release-notes/fortran-compiler-release-notes.html
https://www.intel.com/content/www/us/en/docs/fortran-compiler/developer-guide-reference/2023-2/do-concurrent.html
https://kokkos.github.io/kokkos-core-wiki/
https://github.com/alpaka-group/alpaka/releases/tag/0.9.0
https://github.com/alpaka-group/alpaka
https://github.com/IntelPython/dpctl
https://github.com/IntelPython/dpctl
https://pypi.org/project/dpctl/
https://github.com/IntelPython/numba-dpex
https://github.com/IntelPython/numba-dpex
https://anaconda.org/intel/numba-dpex
https://github.com/IntelPython/dpnp
https://pypi.org/project/dpnp/
https://github.com/IntelPython/dpnp/releases
https://doi.org/10.1145/3624062.3624178
10.1145/3624062.3624178


Many Cores, Many Models SC-W 2023, November 12–17, 2023, Denver, CO, USA

Individual Category Discussions. Of course, some assessments are
subject to discussion. For example the some support category,
which is mostly used for incomplete support in Figure 1. Ope-
nACC C++ support on NVIDIA GPUs (7) was rated complete, while
OpenMP C++ support showed some ambivalence (9). Here, the as-
sessment was made because NVIDIA is upfront in acknowledging
that some features of OpenMP for GPU offloading are still missing.
Further ambivalence in rating can be seen for Python on NVIDIA
GPUs, were the pick-up of the Open Source community was ac-
knowledged through the added non-vendor support category. C++
standard language parallelism at AMD has most ambivalence, a
result of the rapidly changing support through multiple venues
– and currently no vendor-supported, advertised solution (which
roc-stdpar [6] might become). The double-rating of CUDA C++ on
Intel GPUs honors the research project chipStar [56], besides the
CUDA-to-SYCL conversion tool [31] by Intel. Finally, C++ standard
parallelism for Intel GPUs has ambivalence, as all pSTL functional-
ity currently resides in a custom namespace.

Although due care has been taken when compiling the presented
data, there might still be unexplored venues, or changed status. The
presented descriptions of this paper reside in a GitHub repository
and are open for collaboration through issues or pull requests [20].

6 CONCLUSION
This paper presented a methodology to categorize the support of
programming models on HPC GPU devices, assessing the level of
support and the provider (vendor or third-party). The results for a
number of selected models on GPUs of three vendors (AMD, Intel,
NVIDIA) were presented in Figure 1, accompanied by extensive
descriptions in section 4. The limitations of the method and some
key caveats of the presentation were discussed in section 5.

The support for NVIDIA GPUs can be considered most compre-
hensive, founded in their long-time prevalence in the field.CUDA is
possibly the most famous GPU programming model, and both other
vendors (AMD, Intel) provide tools for converting CUDA C/C++
to their native model (HIP, SYCL). AMD designed HIP closely to
mimic CUDA-like programming and enable it other platforms. And,
indeed, NVIDIA and AMD GPUs can be used from the same source
code, and recently also Intel GPUs with chipStar. SYCL is an entirely
different programming model compared to CUDA or HIP, but it also
supports all three GPU platform; either by the work by Intel or the
community (Open SYCL). While OpenACC can be used on NVIDIA
and AMD GPUs, support for Intel GPUs does not exist. OpenMP, on
the other hand, is supported on all three platforms – and even for
both C++ and Fortran. Standard language parallelism appears to be
the model with the fastest change at the moment, with multiple new
projects in progress for all three platforms. Kokkos and Alpaka both
provide higher-level abstractions and support all three platform.
Python, a somewhat outlier in the list, is also well-supported by all
three platforms.

While the C++ support appears to be well on the way to good
compatibility and portability, the situation looks severely different
for Fortran. The only natively supported programming model on
all three platforms is OpenMP.

A key component in the ecosystem is the LLVM toolchain. The
compilers of AMD, Intel, and NVIDIA are all based on LLVM infras-
tructure and partly take great effort in upstreaming their changes.
Notable are also the open licenses attached to many components,
even the key ecosystem compilers (AMD, Intel). Through LLVM,
many third-party/community projects are enabled, which now add
valuable contributions to the ecosystem (for example Open SYCL).

Not assessed in this work was the performance of programming
models. It is a hard task, but might become a future venue for exten-
sion of the presented material. Of course, the landscape of Figure 1
evolves swiftly; the progress is tracked in a GitHub repository [20],
open for suggestions.

ACKNOWLEDGMENTS
A previous version of this work was shown in a presentation at
a workshop [22]. As it led to many questions and partly heated
discussions, the author decided to create a stand-alone version of
the comparison and publish it on GitHub [20] with an accompany-
ing blogpost [21], now utilizing source data in YAML form with
conversion to HTML and TeX. As interest continued, the material
was updated and significantly extended to become this paper. The
goal is a living overview of the evolving field, with snapshots in
paper form at regular intervals.

The author would like to acknowledge the frequent discussions
with his colleague of Jülich Supercomputing Centre, trying to un-
derstand the level of support and determine also corner-cases and
unpublished routes of GPU support.

REFERENCES
[1] Aksel Alpay, Bálint Soproni, Holger Wünsche, and Vincent Heuveline. 2022.

Exploring the possibility of a hipSYCL-based implementation of oneAPI. In
International Workshop on OpenCL. ACM. https://doi.org/10.1145/3529538.3530
005

[2] AMD. 2023. AOMP. https://github.com/ROCm-Developer-Tools/aomp
[3] AMD. 2023. GPUFORT. https://github.com/ROCmSoftwarePlatform/gpufort
[4] AMD. 2023. HIP. https://rocm.docs.amd.com/projects/HIP/en/latest/
[5] AMD. 2023. hipfort. https://rocm.docs.amd.com/projects/hipfort/en/latest/
[6] AMD. 2023. roc-stdpar. https://github.com/ROCmSoftwarePlatform/roc-stdpar
[7] Libompx Authors and Contributors. [n. d.]. Libompx. https://github.com/markd

ewing/libompx/tree/add_catch
[8] Pierre Carbonelle. 2023. PopularitY of Programming Language. https://pypl.git

hub.io/PYPL.html
[9] Valentin Clement and Jeffrey S. Vetter. 2021. Flacc: Towards OpenACC support

for Fortran in the LLVM Ecosystem. In 2021 IEEE/ACM 7th Workshop on the LLVM
Compiler Infrastructure in HPC (LLVM-HPC). 12–19. https://doi.org/10.1109/LL
VMHPC54804.2021.00007

[10] TOP500 Compilers. 2023. TOP500 List. https://www.top500.org/lists/top500/20
23/06/

[11] Tom J Deakin, Andrei Poenaru, Tom Lin, and Simon N Mcintosh-Smith. 2021.
Tracking Performance Portability on the Yellow Brick Road to Exascale. In Pro-
ceedings of P3HPC 2020 (Proceedings of P3HPC 2020: International Workshop on
Performance, Portability, and Productivity in HPC, Held in conjunction with SC
2020: The International Conference for High Performance Computing, Networking,
Storage and Analysis). Institute of Electrical and Electronics Engineers (IEEE),
United States, 1–13. https://doi.org/10.1109/P3HPC51967.2020.00006 Publisher
Copyright: © 2020 IEEE..

[12] Tom Deakin, James Price, Matt Martineau, and Simon McIntosh-Smith. 2018.
Evaluating attainable memory bandwidth of parallel programming models via
BabelStream. International Journal of Computational Science and Engineering 17, 3
(2018), 247–262. https://doi.org/10.1504/IJCSE.2018.095847 arXiv:https://www.in-
derscienceonline.com/doi/pdf/10.1504/IJCSE.2018.095847

[13] Joel E. Denny, Seyong Lee, and Jeffrey S. Vetter. 2018. CLACC: Translating
OpenACC to OpenMP in Clang. In 2018 IEEE/ACM 5th Workshop on the LLVM
Compiler Infrastructure in HPC (LLVM-HPC). 18–29. https://doi.org/10.1109/LL
VM-HPC.2018.8639349

[14] GCC Developers. 2023. GCC OpenMP. https://gcc.gnu.org/wiki/openmp

Author’s Version — Please Cite DOI 10.1145/3624062.3624178.

https://doi.org/10.1145/3529538.3530005
https://doi.org/10.1145/3529538.3530005
https://github.com/ROCm-Developer-Tools/aomp
https://github.com/ROCmSoftwarePlatform/gpufort
https://rocm.docs.amd.com/projects/HIP/en/latest/
https://rocm.docs.amd.com/projects/hipfort/en/latest/
https://github.com/ROCmSoftwarePlatform/roc-stdpar
https://github.com/markdewing/libompx/tree/add_catch
https://github.com/markdewing/libompx/tree/add_catch
https://pypl.github.io/PYPL.html
https://pypl.github.io/PYPL.html
https://doi.org/10.1109/LLVMHPC54804.2021.00007
https://doi.org/10.1109/LLVMHPC54804.2021.00007
https://www.top500.org/lists/top500/2023/06/
https://www.top500.org/lists/top500/2023/06/
https://doi.org/10.1109/P3HPC51967.2020.00006
https://doi.org/10.1504/IJCSE.2018.095847
https://arxiv.org/abs/https://www.inderscienceonline.com/doi/pdf/10.1504/IJCSE.2018.095847
https://arxiv.org/abs/https://www.inderscienceonline.com/doi/pdf/10.1504/IJCSE.2018.095847
https://doi.org/10.1109/LLVM-HPC.2018.8639349
https://doi.org/10.1109/LLVM-HPC.2018.8639349
https://gcc.gnu.org/wiki/openmp
https://doi.org/10.1145/3624062.3624178
10.1145/3624062.3624178


SC-W 2023, November 12–17, 2023, Denver, CO, USA Andreas Herten

[15] LLVM/Clang Developers. 2023. Clang OpenMP. https://clang.llvm.org/docs/Op
enMPSupport.html

[16] GCC. 2023. GCC OpenACC. https://gcc.gnu.org/wiki/OpenACC
[17] Khronos Group. 2023. SYCL. https://www.khronos.org/sycl/
[18] Jeff Hammond. 2022. Shifting through the Gears of GPU Programming: Under-

standing Performance and Portability Trade-offs. https://www.nvidia.com/en-
us/on-demand/session/gtcspring22-s41620/ GTC Digital Spring Conference.

[19] Jeff R Hammond, Tom Deakin, Jim H Cownie, and Simon N McIntosh-Smith.
2022. Benchmarking Fortran DO CONCURRENT on CPUs and GPUs Using
BabelStream. In 2022 IEEE/ACM International Workshop on Performance Modeling,
Benchmarking and Simulation of High Performance Computer Systems (PMBS).
Institute of Electrical and Electronics Engineers (IEEE), United States, 1–18.
https://doi.org/10.1109/PMBS56514.2022.00013 SC 2022 Workshops International
Conference for High Performance Computing, Networking, Storage and Analysis
; Conference date: 13-11-2022 Through 18-11-2022.

[20] Andreas Herten. 2022. GPU Vendor/Programming Model Compatibility Table.
https://github.com/AndiH/gpu-lang-compat

[21] Andreas Herten. 2022. GPU Vendor/Programming Model Compatibility Table.
(2022). https://doi.org/10.34732/XDVBLG-R1BVIF

[22] Andreas Herten and Kaveh Haghighi Mood. 2022. Many Ways to GPUs - A GPU
Introduction. https://juser.fz-juelich.de/record/916369 The content is also
available at https://www.nat-esm.de/services/documentation.

[23] HPE. 2023. HPE Cray Programming Environment. https://www.hpe.com/psnow/
doc/a50002303enw

[24] Thomas Huber, Swaroop Pophale, Nolan Baker, Michael Carr, Nikhil Rao, Jaydon
Reap, Kristina Holsapple, Joshua Hoke Davis, Tobias Burnus, Seyong Lee, David E.
Bernholdt, and Sunita Chandrasekaran. 2022. ECP SOLLVE: Validation and
Verification Testsuite Status Update and Compiler Insight for OpenMP. In 2022
IEEE/ACM International Workshop on Performance, Portability and Productivity in
HPC (P3HPC). 123–135. https://doi.org/10.1109/P3HPC56579.2022.00017

[25] Intel. 2023. Data Parallel Control. https://github.com/IntelPython/dpctl
[26] Intel. 2023. Data Parallel Extension for Numpy. https://github.com/IntelPython

/dpnp
[27] Intel. 2023. Data-parallel Extension to Numba. https://github.com/IntelPython/n

umba-dpex
[28] Intel. 2023. Intel Application Migration Tool for OpenACC to OpenMP API. https:

//github.com/intel/intel-application-migration-tool-for-openacc-to-openmp
[29] Intel. 2023. oneAPI. https://www.intel.com/content/www/us/en/developer/tool

s/oneapi/toolkits.html
[30] Intel. 2023. oneDPL. https://oneapi-src.github.io/oneDPL/index.html
[31] Intel. 2023. SYCLomatic. https://github.com/oneapi-src/SYCLomatic
[32] Intel and Contributors. 2023. oneAPI DPC++ Compiler. https://github.com/intel/l

lvm LLVM-fork with DPC++ support by Intel..
[33] Aaron Jarmusch and Sunita Chandrasekaran. [n. d.]. OpenACC Verification and

Validation Testsuite. https://crpl.cis.udel.edu/oaccvv/
[34] Aaron Jarmusch, Aaron Liu, Christian Munley, Daniel Horta, Vaidhyanathan

Ravichandran, Joel Denny, Kyle Friedline, and Sunita Chandrasekaran. 2022.
Analysis of Validating and Verifying OpenACC Compilers 3.0 and Above. In
2022 Workshop on Accelerator Programming Using Directives (WACCPD). 1–10.
https://doi.org/10.1109/WACCPD56842.2022.00006

[35] Hartmut Kaiser, Mikael Simberg, Bryce Adelstein Lelbach,ThomasHeller, Agustin
Berge, John Biddiscombe, Auriane Reverdell, Anton Bikineev, Grant Mercer,
Andreas Schaefer, Kevin Huck, Adrian Lemoine, Taeguk Kwon, Jeroen Habraken,
Matthew Anderson, Steven R. Brandt, Marcin Copik, Srinivas Yadav, Martin
Stumpf, Daniel Bourgeois, Akhil Nair, Denis Blank, Giannis Gonidelis, Rebecca
Stobaugh, Nikunj Gupta, Shoshana Jakobovits, Vinay Amatya, Lars Viklund,
Patrick Diehl, and Zahra Khatami. 2023. STEllAR-GROUP/hpx: HPX V1.9.1: The
C++ Standards Library for Parallelism and Concurrency. https://doi.org/10.5281/
zenodo.5185328

[36] Andreas Kloeckner, Gert Wohlgemuth, Gregory Lee, Tomasz Rybak, Alex Nitz,
David Chiang, Stan Seibert, Martin Bergtholdt, Thomas Unterthiner, Graham
Markall, Mit Kotak, Vincent Favre-Nicolin, Bogdan Opanchuk, Bruce Merry,
Nicolas Pinto, FabrizioMilo,Thomas Collignon, Florian Rathgeber, Simon Perkins,
Vladimir Rutsky, Bryan Catanzaro, Alex Park, Freddie Witherden, Lev E. Givon,
Luke Pfister, Marcus Brubaker, RA ZA, Loic Hausammann, and Christoph Gohlke.
2023. PyCUDA. https://doi.org/10.5281/zenodo.8121901

[37] Siu Kwan Lam, stuartarchibald, Antoine Pitrou, Mark Florisson, Stan Seibert,
Graham Markall, esc, Todd A. Anderson, Guilherme Leobas, rjenc29, Michael
Collison, luk-f a, Jay Bourque, Aaron Meurer, Kaustubh, Travis E. Oliphant, Nick
Riasanovsky, Michael Wang, densmirn, njwhite, Ethan Pronovost, Ehsan Totoni,
Eric Wieser, Stefan Seefeld, Hernan Grecco, Andre Masella, Pearu Peterson, Isaac
Virshup, Matty G, and Itamar Turner-Trauring. 2023. numba/numba: Version
0.57.1. https://doi.org/10.5281/zenodo.8087361

[38] Meifeng Lin, Zhihua Dong, Tianle Wang, Mohammad Atif, Meghna Battacharya,
Kyle Knoepfel, Charles Leggett, Brett Viren, and Haiwang Yu. 2023. Portable
Programming Model Exploration for LArTPC Simulation in a Heterogeneous
Computing Environment: OpenMP vs. SYCL. (4 2023). https://www.osti.gov/bib
lio/1973454

[39] LLVM/Flang. 2023. Flang. https://flang.llvm.org/
[40] George S. Markomanolis, Aksel Alpay, Jeffrey Young, Michael Klemm, Nicholas

Malaya, Aniello Esposito, Jussi Heikonen, Sergei Bastrakov, Alexander Debus,
Thomas Kluge, Klaus Steiniger, Jan Stephan, ReneWidera, andMichael Bussmann.
2022. Evaluating GPU Programming Models for the LUMI Supercomputer. In
Supercomputing Frontiers, Dhabaleswar K. Panda and Michael Sullivan (Eds.).
Springer International Publishing, Cham, 79–101.

[41] A. Matthes, R. Widera, E. Zenker, B. Worpitz, A. Huebl, and M. Bussmann.
2017. Tuning and optimization for a variety of many-core architectures with-
out changing a single line of implementation code using the Alpaka library.
arXiv:1706.10086 https://arxiv.org/abs/1706.10086

[42] Microsoft. 2023. C++ AMP. https://learn.microsoft.com/en-us/cpp/parallel/amp/
cpp-amp-cpp-accelerated-massive-parallelism?view=msvc-170

[43] NVIDIA. 2023. CUDA Fortran. https://developer.nvidia.com/cuda-fortran
[44] NVIDIA. 2023. CUDA Python. https://nvidia.github.io/cuda-python/index.html
[45] NVIDIA. 2023. CUDA Toolkit. https://developer.nvidia.com/cuda-toolkit
[46] NVIDIA. 2023. cuNumeric. https://developer.nvidia.com/cunumeric
[47] NVIDIA. 2023. NVIDIA HPC SDK. https://developer.nvidia.com/hpc-sdk
[48] Ryosuke Okuta, Yuya Unno, Daisuke Nishino, Shohei Hido, and Crissman Loomis.

2017. CuPy: A NumPy-Compatible Library for NVIDIA GPU Calculations. In
Proceedings of Workshop on Machine Learning Systems (LearningSys) in The Thirty-
first Annual Conference on Neural Information Processing Systems (NIPS). http:
//learningsys.org/nips17/assets/papers/paper_16.pdf

[49] Swaroop Pophale, Felipe Cabarcas, and Sunita Chandrasekaran. [n. d.]. OpenMP
Validation and Verification Testsuite. https://crpl.cis.udel.edu/ompvvsollve

[50] ECP Exascale Computing Project. 2022. OpenMP Roadmap for Accelerators
Across DOE Pre-Exascale/Exascale Machines. https://www.openmp.org/wp-co
ntent/uploads/2022_ECP_Community_BoF_Days-OpenMP_RoadMap_BoF.pdf

[51] PyTorch Authors and Contributors. 2023. PyTorch C++ Interface. https://pytorch.
org/cppdocs/frontend.html

[52] RAJA Authors and Contributors. [n. d.]. RAJA Performance Portability Layer.
https://github.com/LLNL/RAJA

[53] John E. Stone, David Gohara, and Guochun Shi. 2010. OpenCL: A Parallel Pro-
gramming Standard for Heterogeneous Computing Systems. Computing in Science
& Engineering 12, 3 (2010), 66–73. https://doi.org/10.1109/MCSE.2010.69

[54] TIOBE. 2023. TIOBE Index. https://www.tiobe.com/tiobe-index/
[55] Christian R. Trott, Damien Lebrun-Grandié, Daniel Arndt, Jan Ciesko, Vinh Dang,

Nathan Ellingwood, Rahulkumar Gayatri, Evan Harvey, Daisy S. Hollman, Dan
Ibanez, Nevin Liber, Jonathan Madsen, Jeff Miles, David Poliakoff, Amy Powell,
Sivasankaran Rajamanickam, Mikael Simberg, Dan Sunderland, Bruno Turcksin,
and Jeremiah Wilke. 2022. Kokkos 3: Programming Model Extensions for the
Exascale Era. IEEE Transactions on Parallel and Distributed Systems 33, 4 (2022),
805–817. https://doi.org/10.1109/TPDS.2021.3097283

[56] Jisheng Zhao, Colleen Bertoni, Jeffrey Young, Kevin Harms, Vivek Sarkar, and
Brice Videau. 2023. HIPLZ: Enabling Performance Portability for Exascale
Systems. In Euro-Par 2022: Parallel Processing Workshops, Jeremy Singer, Yehia
Elkhatib, Dora Blanco Heras, Patrick Diehl, Nick Brown, and Aleksandar Ilic
(Eds.). Springer Nature Switzerland, Cham, 197–210.

Author’s Version — Please Cite DOI 10.1145/3624062.3624178.

https://clang.llvm.org/docs/OpenMPSupport.html
https://clang.llvm.org/docs/OpenMPSupport.html
https://gcc.gnu.org/wiki/OpenACC
https://www.khronos.org/sycl/
https://www.nvidia.com/en-us/on-demand/session/gtcspring22-s41620/
https://www.nvidia.com/en-us/on-demand/session/gtcspring22-s41620/
https://doi.org/10.1109/PMBS56514.2022.00013
https://github.com/AndiH/gpu-lang-compat
https://doi.org/10.34732/XDVBLG-R1BVIF
https://juser.fz-juelich.de/record/916369
https://www.hpe.com/psnow/doc/a50002303enw
https://www.hpe.com/psnow/doc/a50002303enw
https://doi.org/10.1109/P3HPC56579.2022.00017
https://github.com/IntelPython/dpctl
https://github.com/IntelPython/dpnp
https://github.com/IntelPython/dpnp
https://github.com/IntelPython/numba-dpex
https://github.com/IntelPython/numba-dpex
https://github.com/intel/intel-application-migration-tool-for-openacc-to-openmp
https://github.com/intel/intel-application-migration-tool-for-openacc-to-openmp
https://www.intel.com/content/www/us/en/developer/tools/oneapi/toolkits.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/toolkits.html
https://oneapi-src.github.io/oneDPL/index.html
https://github.com/oneapi-src/SYCLomatic
https://github.com/intel/llvm
https://github.com/intel/llvm
https://crpl.cis.udel.edu/oaccvv/
https://doi.org/10.1109/WACCPD56842.2022.00006
https://doi.org/10.5281/zenodo.5185328
https://doi.org/10.5281/zenodo.5185328
https://doi.org/10.5281/zenodo.8121901
https://doi.org/10.5281/zenodo.8087361
https://www.osti.gov/biblio/1973454
https://www.osti.gov/biblio/1973454
https://flang.llvm.org/
https://arxiv.org/abs/1706.10086
https://arxiv.org/abs/1706.10086
https://learn.microsoft.com/en-us/cpp/parallel/amp/cpp-amp-cpp-accelerated-massive-parallelism?view=msvc-170
https://learn.microsoft.com/en-us/cpp/parallel/amp/cpp-amp-cpp-accelerated-massive-parallelism?view=msvc-170
https://developer.nvidia.com/cuda-fortran
https://nvidia.github.io/cuda-python/index.html
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cunumeric
https://developer.nvidia.com/hpc-sdk
http://learningsys.org/nips17/assets/papers/paper_16.pdf
http://learningsys.org/nips17/assets/papers/paper_16.pdf
https://crpl.cis.udel.edu/ompvvsollve
https://www.openmp.org/wp-content/uploads/2022_ECP_Community_BoF_Days-OpenMP_RoadMap_BoF.pdf
https://www.openmp.org/wp-content/uploads/2022_ECP_Community_BoF_Days-OpenMP_RoadMap_BoF.pdf
https://pytorch.org/cppdocs/frontend.html
https://pytorch.org/cppdocs/frontend.html
https://github.com/LLNL/RAJA
https://doi.org/10.1109/MCSE.2010.69
https://www.tiobe.com/tiobe-index/
https://doi.org/10.1109/TPDS.2021.3097283
https://doi.org/10.1145/3624062.3624178
10.1145/3624062.3624178

	Abstract
	1 Introduction
	2 Related Work
	3 Method, Categories
	4 Descriptions
	5 Discussion
	6 Conclusion
	Acknowledgments
	References

