

OpenGPT-X

Training Large Language Models on HPC Systems

Carolin Penke, Chelsea John, Andreas Herten, Jan Ebert, Stefan Kesselheim, Estela Suarez

Large Language Models and Applications

A language model is a probability distribution predicting the next word in a sentence:

 $P(w_t|w_{1:(t-1)}), \qquad w_1, \ldots, w_{t-1}, w_t \in V.$

Use Case Examples

1) Digital assistant for customer claims journey

Other Language Models

GPT, Generative Pre-trained Transformer by OpenAI, GPT-1 (2018), GPT-2 (2019), GPT-3 (2020), (available for fee) **OPT**, Open Pre-trained Transformer (2022),

2) Writing sports match reports

. . .

by Meta (available to researchers for free) **BLOOM** (2022), by BigScience (HuggingFace), based on Megatron-Deepspeed

Megatron: Open-Source framework for training transformers at scale, by Nvidia **Deepspeed**: Distributed training library by Microsoft, implement ZeRO stages

Language models need to be trained with lots of data on supercomputers!

The Transformer Architecture

Recent Breakthroughs possible because of novel network architecture called transformer, based on **self-attention layers**:

Self-attention Layers form Transformer Architectures

- Multiple self-attention layers in parallel form multi-headed attention.
- Multi-headed attention, normalization layers, feed-forward layers, and residual connections form a transformer block
- Multiple transformer blocks form a transformer.

3D Parallelism for Training

To scale to a full supercomputer three kinds of parallelism are intertwined.

1. Data parallelism (DP)

- Input data is distributed across ranks
- Full model replica on each rank
- Gradients are computed for local mini batch
- Gradients are synchronized during backward propagation (all-reduce)
- 2. Pipeline parallelism (PP)
 - Layers of each data parallel replica are distributed across ranks
 - Overlay computations by dividing local mini batch into micro-batches (Gradient accumulation steps)

Advantages over **RNN and LSTM** Architectures

- + mediates vanishing gradient effect
- + not inherently sequential, parallel computations
- possible
- + matrix-matrix products

C. Penke, 2022, A mathematician's introduction to transformers and large language models, JSC Accelerating Devices Lab Blog, https://doi.org/10.34732/xdvblg-qsbtyx

• Clever scheduling strategies

- 2. Tensor parallelism (TP)
 - Weight tensors (matrices) of each pipeline stage are distributed across ranks
 - Multi-headed attention parallel by nature
 - Feed-forward layers distributed column- or row-wise to minimize communication
 - Communication intensive (two all reduces per layer), NVLink useful

$#GPUs = DP \times PP \times TP = DP \times MP$

Parallel Training of Deep Networks with Local Updates, Laskin, Metz, Nabarro, Saroufim, Noune, Luschi, Sohl-Dickstein, Abbeel, 2020

Novel Architectures

Flagship Cluster: Juwels Booster with> 3200 Nvidia A100 GPUs, 40 GB

JURECA Evaluation Platform

additional nodes for evaluation and testing

AMD Instinct MI250 GPUs

Graphcore IPU-POD4

Scalability and Model Layouting

- Training highly scalable
- Goal: High throughput on small node counts (for testing) and large node counts (final training).
- ~ **50 % of peak** (312 TFLOPS/s) easily possible
- Good performance and simplicity: Data parallelism, limited scalability
- Problem: Large model does not **fit** into memory \rightarrow Pipeline and Tensor parallelism needed
- 32 GPUs • Tensor parallelism: More commu-• Parameters + gradients nication \rightarrow Distribution within node • Pipeline parallelism: Less arithmetic efficiency ("Pipeline bubble").

Strong

scaling for

13B model

A. Herten, 2022, First Benchmarks with AMD Instinct MI250 GPUs at JSC, JSC Accelerating Devices Lab Blog, https://doi.org/10.34732/xdvblg-rmlyc3

PCIe Switches (optional

https://docs.graphcore.ai/projects/graphcore-ipum2000-datasheet/en/latest/index.html

Challenge: A100 only 40GB

Challenges and Collaborations

Sequana 2 cabinet has a hardware problem with flipping links.

- Spurious error showing up as port error in NCCL
- Hard to reproduce, even harder to "debug"
- Reproducing SOTA vs. novel research

• **Energy** consumption

• GPT-3 training = power for > 100 houses for a year.

jwb0694:13939:14102 [0] transport/net_ib.cc:94 NCCL WARN NET/IB : Got async event : port error jwb0694:13938:14101 [0] transport/net_ib.cc:94 NCCL WARN NET/IB : Got async event : port error

jwb0694:13940:14103 [0] transport/net_ib.cc:94 NCCL WARN NET/IB : Got async event : port error

jwb0694:13941:14108 [0] transport/net ib.cc:94 NCCL WARN NET/IB : Got async event : port error

Possible collaborations: Do you have experience with LLMs or interesting ML-specific hardware?

From Wikimedia Commons, Rahm Emanuael

Member of the Helmholtz Association