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Abstract

A nowvel generator is used to generate highly optimized, architecture-specific microkernels for the BLIS library.
The performance of potential GEMM microkernels is evaluated on Allwinner D1, EUPILOT VEC accelerator

FPGA SDV and Fujitsu AG64FX.

Introduction

In recent years, there has been a growing diversity of
Instruction Set Architectures (ISAs) in the comput-
ing industry. x86 dominance is challenged by other
ISAs such as ARM and RISC-V. The demand for
energy-efficient computing and specialized accelera-
tors provides opportunities for innovation at the ISA
level.

This prospect also brings challenges for software devel-
opers, especially for the HPC community. Adapting
software to a new ISA can be an elaborate and costly
process. Performance-critical parts of libraries and
HPC software must be ported, verified, optimized,
and maintained for different ISAs with diverse exten-
sions.

In this work, we introduce a tool that can generate
compute kernels for different ISAs. The focus is on
two Vector-Length-Agnostic (VLA) ISAs, ARM SVE
and RISC-V RVV, in which the vector size is not
fixed at compile time. The generator was applied
to generate highly-optimized ARM SVE kernels for
the A64FX processor. We use the same approach to
generate RISC-V RVV 0.7.1 kernels for the Allwin-
ner D1, a commercially available non-HPC RISC-V
processor with support for a draft version of the RVV
extension, as well as the FPGA SDV (RVV 0.7.1) of
the in-development EUPILOT VEC accelerator and
evaluate the performance.

In the following section, we introduce the BLIS
library [1, 2] and the microkernel generator. In the
subsequent section, we present a method to exploit
the hardware and show the results for various kernel
sizes.

Design and Implementation

BLAS (Basic Linear Algebra Subroutines) is a funda-
mental building block of any high-performing software
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stack, in HPC and beyond. The performance of a
multitude of applications and numerous higher-level
libraries, such as LAPACK, depends on this library.
BLIS [1] is an open-source, superset implementation
of BLAS with a modern design and a modern inter-
face. BLIS can reach performance on par with or
better than vendor BLAS implementation. The ap-
proach of the library to accelerating individual routines
allows accelerating virtually all BLAS3 methods by
implementing only a handful of optimized microker-
nels (GEMM, TRSM, GEMMTRSM, etc.) — see the
extensive presentation in [1].

In BLIS, GEMM is implemented as a blocked algo-
rithm with 6 loops. The microkernel implements the
innermost loop and multiplies a m, X k. micropanel
from the A matrix with a k. X n,. micropanel from the
B matrix. The microkernel keeps a m, X n, element
microtile in registers and performs a series of k. rank-1
updates into it. The result is scaled with a scalar
« and added into to a microtile from the matrix C,
scaled with S.

The microkernel size is m,- xn... In our approach, m,.
elements are stored in vector registers and the vector
register size is not fixed. Because of this, we give a
kernel size in vector registers for m, and elements
for n,., for example 2Vx10 denotes a kernel with two
vector registers (of given precision) and ten elements.

The code generated by our tool includes the O(n?)
k. rank-1 updates and accumulation, but not the O(n?)
update of the C microtile. We call these partial mi-
crokernels nanokernels. The generator code is written
in Python and generates C files with inline-assembly
blocks. The generator produces well-optimized rou-
tines based on input parameters:

e Instruction set

e Size of the kernel

e Specific tuning parameters (i.e. order of loading
operations, prefetching, k. unroll factor, etc.)

For this work, we only focus on performance of dif-
ferent kernel sizes. The basic unit of computation
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utilized by the generator is an FMA (Fused Multiply-
Add) instruction. Modern architectures have started
implementing other approaches that allow higher com-
pute throughput, such as instructions that perform
inner-products (Intel AMX, Apple AMX, ARM SME,
newer NVIDIA and AMD GPU ISAs, ...). The devel-
opment to utilize these types of instructions is planned
for the future.

Standalone benchmarks are created to evaluate the
performance of different kernel sizes with nanokernels.
Measuring the performance of these nanokernels allows
identifying microkernel sizes and structures that are
likely to perform well on a given micro architecture.

Results and Discussion

We empirically measure the throughput of FMA in-
structions by creating a series of benchmarks that
contain an assembly block with an increasing number
of independent FMA instructions and measuring the
clock cycles to execute the block. The empirical maxi-
mum for FP32 is 3.63 ELO2 on Allwinner D1, 31.08

cycle

gt on the VEC SDV and 63.93 £-0F on the AG4FX.
In the subsequent figures, the respective value is given
as a horizontal line. We compare our throughput to
these numbers instead of the theoretical values to be
more robust against platform side-effects such as OS
interference. The theoretical values are 4, 32 and 64
% respectively.

Figures 1, 2, and 3 show the performance of dif-
ferent kernel sizes on the Allwinner D1, VEC SDV,
and A64FX, respectively, for single-precision GEMM
microkernels. The respective best kernel reaches 85%,
94%, and almost 100% of each measured maximum

throughput.
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Figure 1: Nanokernel performance on Allwinner D1

Apart from the kernel size, further optimization op-
portunities relate to the internal structure of the code,
such as the order of instructions, number of preloaded
vectors, and more. The generator incorporates fea-
tures to fine-tune these internal structures to match
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Figure 2: Nanokernel performance on VEC FPGA SDV
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Figure 3: Nanokernel performance on Fujitsu A64FX

best the microarchitecture and its quirks.

We see excellent efficiency with the code generation
for the A64FX, which is based on previous work done
in [3] and is very mature. For the SDV, we expect a
similar level of efficiency after incorporating further
optimizations respecting architectural details. For the
D1 we observed changes in performance depending
on the order in which vector registers are accessed,
suggesting that further optimization is also possible,
however this is is a non-HPC grade processor as is
evident by the max. throughput.
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