
Many Cores, Many Models
GPU Programming Model vs. Vendor Compatibility Overview
P3HPC Workshop

Andreas Herten, Jülich Supercomputing Centre, Forschungszentrum Jülich



Overview

Introduction

Table

Descriptions

Discussions

Conclusion

Member of the Helmholtz Association 13 November 2023 Slide 2 9



State of the GPUnion
GPUs: prevalent in largest HPC installations, enablers of Exascale
Top500 June 23: 70% of FLOP/s by GPUs, > 100 000 GPUs in Frontier+Aurora
3 vendors (AMD, Intel, NVIDIA), each with native programmingmodel (HIP, SYCL, CUDA)
Further models, partly from community: OpenMP, OpenACC; Kokkos, RAJA, Alpaka;
Standard Parallelism; Python andmore!
Major languages: C/C++, Fortran
Plethora of possibilities: 3× 9× 2 = 54 →What to choose?

CUDA HIP SYCL OpenACC OpenMP Standard Kokkos ALPAKA
C++ Fortran C++ Fortran C++ Fortran C++ Fortran C++ Fortran C++ Fortran C++ Fortran C++ Fortran Python

NVIDIA 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

AMD 18 19 20 4 21 6 22 23 24 25 26 27 28 14 29 16 30

Intel 31 32 33 34 35 6 36 37 38 39 40 41 42 14 43 16 44



Member of the Helmholtz Association 13 November 2023 Slide 3 9



State of the GPUnion
GPUs: prevalent in largest HPC installations, enablers of Exascale
Top500 June 23: 70% of FLOP/s by GPUs, > 100 000 GPUs in Frontier+Aurora
3 vendors (AMD, Intel, NVIDIA), each with native programmingmodel (HIP, SYCL, CUDA)
Further models, partly from community: OpenMP, OpenACC; Kokkos, RAJA, Alpaka;
Standard Parallelism; Python andmore!
Major languages: C/C++, Fortran
Plethora of possibilities: 3× 9× 2 = 54 →What to choose?

CUDA HIP SYCL OpenACC OpenMP Standard Kokkos ALPAKA
C++ Fortran C++ Fortran C++ Fortran C++ Fortran C++ Fortran C++ Fortran C++ Fortran C++ Fortran Python

NVIDIA 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

AMD 18 19 20 4 21 6 22 23 24 25 26 27 28 14 29 16 30

Intel 31 32 33 34 35 6 36 37 38 39 40 41 42 14 43 16 44



Member of the Helmholtz Association 13 November 2023 Slide 3 9



State of the GPUnion
GPUs: prevalent in largest HPC installations, enablers of Exascale
Top500 June 23: 70% of FLOP/s by GPUs, > 100 000 GPUs in Frontier+Aurora
3 vendors (AMD, Intel, NVIDIA), each with native programmingmodel (HIP, SYCL, CUDA)
Further models, partly from community: OpenMP, OpenACC; Kokkos, RAJA, Alpaka;
Standard Parallelism; Python andmore!
Major languages: C/C++, Fortran
Plethora of possibilities: 3× 9× 2 = 54 →What to choose?

CUDA HIP SYCL OpenACC OpenMP Standard Kokkos ALPAKA
C++ Fortran C++ Fortran C++ Fortran C++ Fortran C++ Fortran C++ Fortran C++ Fortran C++ Fortran Python

NVIDIA 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

AMD 18 19 20 4 21 6 22 23 24 25 26 27 28 14 29 16 30

Intel 31 32 33 34 35 6 36 37 38 39 40 41 42 14 43 16 44



Member of the Helmholtz Association 13 November 2023 Slide 3 9



State of the GPUnion
GPUs: prevalent in largest HPC installations, enablers of Exascale
Top500 June 23: 70% of FLOP/s by GPUs, > 100 000 GPUs in Frontier+Aurora
3 vendors (AMD, Intel, NVIDIA), each with native programmingmodel (HIP, SYCL, CUDA)
Further models, partly from community: OpenMP, OpenACC; Kokkos, RAJA, Alpaka;
Standard Parallelism; Python andmore!
Major languages: C/C++, Fortran
Plethora of possibilities: 3× 9× 2 = 54 →What to choose?

CUDA HIP SYCL OpenACC OpenMP Standard Kokkos ALPAKA
C++ Fortran C++ Fortran C++ Fortran C++ Fortran C++ Fortran C++ Fortran C++ Fortran C++ Fortran Python

NVIDIA 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

AMD 18 19 20 4 21 6 22 23 24 25 26 27 28 14 29 16 30

Intel 31 32 33 34 35 6 36 37 38 39 40 41 42 14 43 16 44



Member of the Helmholtz Association 13 November 2023 Slide 3 9



The Table (Split)
CUDA HIP SYCL

C++ Fortran C++ Fortran C++ Fortran

NVIDIA 1 2 3 4 5 6

AMD 18 19 20 4 21 6

Intel 31 32 33 34 35 6

OpenACC OpenMP Standard
C++ Fortran C++ Fortran C++ Fortran

NVIDIA 7 8 9 10 11 12

AMD 22 23 24 25 26 27

Intel 36 37 38 39 40 41

Kokkos ALPAKA
C++ Fortran C++ Fortran Python

NVIDIA 13 14 15 16 17

AMD 28 14 29 16 30

Intel 42 14 43 16 44

State: Sep 2023 evolving
Categories

Full vendor support
Indirect, but comprehensive
support, by vendor
Vendor support, but not (yet)
entirely comprehensive
Comprehensive support, but not
by vendor
Limited, probably indirect support
– but at least some
No direct support available

C++ C++ (sometimes also C)
Fortran Fortran

Member of the Helmholtz Association 13 November 2023 Slide 4 9



Highlight: CUDA
CUDA HIP SYCL

C++ Fortran C++ Fortran C++ Fortran

NVIDIA 1 2 3 4 5 6

AMD 18 19 20 4 21 6

Intel 31 32 33 34 35 6

OpenACC OpenMP Standard
C++ Fortran C++ Fortran C++ Fortran

NVIDIA 7 8 9 10 11 12

AMD 22 23 24 25 26 27

Intel 36 37 38 39 40 41

Kokkos ALPAKA
C++ Fortran C++ Fortran Python

NVIDIA 13 14 15 16 17

AMD 28 14 29 16 30

Intel 42 14 43 16 44

CUDA
NVIDIA Nativemodel; C/C++, Fortran;

proprietary
Also: Clang

AMD CUDA C++ not directly supported,
but conversion to HIP via HIPIFY;
Fortran via S2S translator
GPUFORT (incl. hipfort)

Intel CUDA C++ not directly supported,
but via conversion to SYCL via
SYCLomatic (DPC++ Compatibility
Tool)
Also: chipStar (via cuspv via Clang)

Member of the Helmholtz Association 13 November 2023 Slide 5 9



Highlight: Standard
CUDA HIP SYCL

C++ Fortran C++ Fortran C++ Fortran

NVIDIA 1 2 3 4 5 6

AMD 18 19 20 4 21 6

Intel 31 32 33 34 35 6

OpenACC OpenMP Standard
C++ Fortran C++ Fortran C++ Fortran

NVIDIA 7 8 9 10 11 12

AMD 22 23 24 25 26 27

Intel 36 37 38 39 40 41

Kokkos ALPAKA
C++ Fortran C++ Fortran Python

NVIDIA 13 14 15 16 17

AMD 28 14 29 16 30

Intel 42 14 43 16 44

Standard Language Parallelism
C++: pSTL; Fortran: do concurrent

NVIDIA Enable through -stdpar=gpu in
NVHPC’s nvc++ and nvfortran
Also (C++): Open SYCL; WIP Intel’s
oneDPL, via DPC++ compiler; WIP,
pSTL in LLVM via OpenMP

AMD No production-level support, but
WIP on roc-stdpar (LLVM, C++)
Also (C++): Open SYCL; WIP
oneDPL; WIP LLVM via OpenMP

Intel C++: oneDPL; Fortran: enable
through -fopenmp-target-do-
concurrent in ifx
Also (C++): Open SYCL

Member of the Helmholtz Association 13 November 2023 Slide 6 9



All Descriptions
CUDA HIP SYCL

C++ Fortran C++ Fortran C++ Fortran

NVIDIA 1 2 3 4 5 6

AMD 18 19 20 4 21 6

Intel 31 32 33 34 35 6

OpenACC OpenMP Standard
C++ Fortran C++ Fortran C++ Fortran

NVIDIA 7 8 9 10 11 12

AMD 22 23 24 25 26 27

Intel 36 37 38 39 40 41

Kokkos ALPAKA
C++ Fortran C++ Fortran Python

NVIDIA 13 14 15 16 17

AMD 28 14 29 16 30

Intel 42 14 43 16 44

All The Details
See appendix for all descriptions
and references
Or: the paper!

Member of the Helmholtz Association 13 November 2023 Slide 7 9

https://doi.org/10.1145/3624062.3624178


Discussions

Model Selection Prevalence, representative cross-section
Notable omission: RAJA (→Kokkos), OpenCL (rare; SYCL), HPX,…

Performance Complicated! Hard to do right/fair on this scale!
But: this workshop series

Topicality Rapidly evolving field, especially if OSS (/LLVM), already some new
developments since paper submission
But: also silent deprecation (GPUFORT)?

Assessments As objective as possible, but details more involved
Example: NVIDIA OpenACC C++ vs. OpenMP C++ ; validation suites helpful

Member of the Helmholtz Association 13 November 2023 Slide 8 9



Conclusion
Overview of support for GPU programmingmodels for HPC languages on GPU platforms

(CUDA, HIP, SYCL, OpenACC, OpenMP, Standard, Kokkos, Alpaka, Python)⊗ (C++, Fortran)⊗ (NVIDIA, AMD, Intel)

Detailed descriptions of support, assessment of status
Table for novel GPU developers and seasoned experts
A lot has happened, ecosystem is muchmore diverse right now

Data for future beyond paper
Raw data, scripts on GitHub, welcoming issues/pull requests
github.com/AndiH/gpu-lang-compat/
Generated website for living document
x-dev.pages.jsc.fz-juelich.de/models/

 Thanks to all people providing input, discussions

Member of the Helmholtz Association 13 November 2023 Slide 9 9

https://github.com/AndiH/gpu-lang-compat
https://github.com/AndiH/gpu-lang-compat/
github.com/AndiH/gpu-lang-compat/
https://x-dev.pages.jsc.fz-juelich.de/models/
x-dev.pages.jsc.fz-juelich.de/models/


Conclusion
Overview of support for GPU programmingmodels for HPC languages on GPU platforms

(CUDA, HIP, SYCL, OpenACC, OpenMP, Standard, Kokkos, Alpaka, Python)⊗ (C++, Fortran)⊗ (NVIDIA, AMD, Intel)

Detailed descriptions of support, assessment of status
Table for novel GPU developers and seasoned experts
A lot has happened, ecosystem is muchmore diverse right now

Data for future beyond paper
Raw data, scripts on GitHub, welcoming issues/pull requests
github.com/AndiH/gpu-lang-compat/
Generated website for living document
x-dev.pages.jsc.fz-juelich.de/models/

 Thanks to all people providing input, discussions

Member of the Helmholtz Association 13 November 2023 Slide 9 9

https://github.com/AndiH/gpu-lang-compat
https://github.com/AndiH/gpu-lang-compat/
github.com/AndiH/gpu-lang-compat/
https://x-dev.pages.jsc.fz-juelich.de/models/
x-dev.pages.jsc.fz-juelich.de/models/


Conclusion
Overview of support for GPU programmingmodels for HPC languages on GPU platforms

(CUDA, HIP, SYCL, OpenACC, OpenMP, Standard, Kokkos, Alpaka, Python)⊗ (C++, Fortran)⊗ (NVIDIA, AMD, Intel)

Detailed descriptions of support, assessment of status
Table for novel GPU developers and seasoned experts
A lot has happened, ecosystem is muchmore diverse right now

Data for future beyond paper
Raw data, scripts on GitHub, welcoming issues/pull requests
github.com/AndiH/gpu-lang-compat/
Generated website for living document
x-dev.pages.jsc.fz-juelich.de/models/

 Thanks to all people providing input, discussions

Member of the Helmholtz Association 13 November 2023 Slide 9 9

https://github.com/AndiH/gpu-lang-compat
https://github.com/AndiH/gpu-lang-compat/
github.com/AndiH/gpu-lang-compat/
https://x-dev.pages.jsc.fz-juelich.de/models/
x-dev.pages.jsc.fz-juelich.de/models/


Conclusion
Overview of support for GPU programmingmodels for HPC languages on GPU platforms

(CUDA, HIP, SYCL, OpenACC, OpenMP, Standard, Kokkos, Alpaka, Python)⊗ (C++, Fortran)⊗ (NVIDIA, AMD, Intel)

Detailed descriptions of support, assessment of status
Table for novel GPU developers and seasoned experts
A lot has happened, ecosystem is muchmore diverse right now

Data for future beyond paper
Raw data, scripts on GitHub, welcoming issues/pull requests
github.com/AndiH/gpu-lang-compat/
Generated website for living document
x-dev.pages.jsc.fz-juelich.de/models/

 Thanks to all people providing input, discussions

Thank you

for your att
ention!



a.herten@fz-juelich.de



@andih@mastodon.so
cial

Member of the Helmholtz Association 13 November 2023 Slide 9 9

https://github.com/AndiH/gpu-lang-compat
https://github.com/AndiH/gpu-lang-compat/
github.com/AndiH/gpu-lang-compat/
https://x-dev.pages.jsc.fz-juelich.de/models/
x-dev.pages.jsc.fz-juelich.de/models/
mailto:a.herten@fz-juelich.de
https://mastodon.social/@andih


Appendix



Appendix
Descriptions
References

Member of the Helmholtz Association 13 November 2023 Slide 2 33



Appendix
Descriptions



Detailed Description I
1 NVIDIA • CUDA • C++: CUDA C/C++ is supported on NVIDIA GPUs through the CUDA Toolkit.
First released in 2007, the toolkit covers nearly all aspects of the NVIDIA platform: an API for
programming (incl. language extensions), libraries, tools for profiling and debugging, compiler,
management tools, and more. The current version is CUDA 12.2. Usually, when referring to CUDA
without any additional context, the CUDA API is meant. While incorporating some Open Source
components, the CUDA platform in its entirety is proprietary and closed sourced. The low-level
CUDA instruction set architecture is PTX, to which higher languages like the CUDA C/C++ are
translated to. PTX is compiled to SASS, the binary code executed on the device. As it is the
reference for platform, the support for NVIDIA GPUs through CUDA C/C++ is very comprehensive.
In addition to support through the CUDA toolkit, NVIDIA GPUs can also be used by Clang,
utilizing the LLVM toolchain to emit PTX code and compile it subsequently. [1]
2 NVIDIA • CUDA • Fortran: CUDA Fortran, a proprietary Fortran extension by NVIDIA, is
supported on NVIDIA GPUs via the NVIDIA HPC SDK (NVHPC). NVHPC implements most features

Member of the Helmholtz Association 13 November 2023 Slide 4 33

https://developer.nvidia.com/cuda-toolkit
https://llvm.org/docs/CompileCudaWithLLVM.html
https://developer.nvidia.com/hpc-sdk


Detailed Description II

of the CUDA API in Fortran and is activated through the -cuda switch in the nvfortran
compiler. The CUDA extensions for Fortran are modeled closely after the CUDA C/C++ definitions.
In addition to creating explicit kernels in Fortran, CUDA Fortran also supports cuf kernels, a way
to let the compiler generate GPU parallel code automatically. Very recently, CUDA Fortran
support was also merged into Flang, the LLVM-based Fortran compiler. [2]
3 NVIDIA • HIP • C++: HIP programs can directly use NVIDIA GPUs via a CUDA backend. As HIP is
strongly inspired by CUDA, the mapping is relatively straight-forward; API calls are named
similarly (for example: hipMalloc() instead of cudaMalloc()) and keywords of the kernel
syntax are identical. HIP also supports some CUDA libraries and creates interfaces to them (like
hipblasSaxpy() instead of cublasSaxpy()). To target NVIDIA GPUs through the HIP
compiler (hipcc), HIP_PLATFORM=nvidia needs to be set in the environment. In order to
initially create a HIP code from CUDA, AMD offers the HIPIFY conversion tool. [3]

Member of the Helmholtz Association 13 November 2023 Slide 5 33

https://reviews.llvm.org/D150159
https://reviews.llvm.org/D150159
https://github.com/ROCm-Developer-Tools/HIP
https://github.com/ROCm-Developer-Tools/HIPIFY


Detailed Description III
4 NVIDIA, AMD • HIP • Fortran: No Fortran version of HIP exists; HIP is solely a C/C++model. But
AMD offers an extensive set of ready-made interfaces to the HIP API and HIP and ROCm libraries
with hipfort (MIT-licensed). All interfaces implement C functionality and CUDA-like Fortran
extensions, for example to write kernels, are available. [4]
5 NVIDIA • SYCL • C++: No direct support for SYCL is available by NVIDIA, but SYCL can be used
on NVIDIA GPUs throughmultiple venues. First, SYCL can be used through DPC++, an
Open-Source LLVM-based compiler project led by Intel. The DPC++ infrastructure is also
available through Intel's commercial oneAPI toolkit (Intel oneAPI DPC++/C++) as a dedicated
plugin. Upstreaming SYCL support directly into LLVM is an ongoing effort, which started in 2019.
Further, SYCL can be used via Open SYCL (previously called hipSYCL), an independently
developed SYCL implementation, using NVIDIA GPUs either through the CUDA support of LLVM or
the nvc++ compiler of NVHPC. A third popular possibility was the NVIDIA GPU support in
ComputeCpp of CodePlay; though the product became unsupported in September 2023. In case

Member of the Helmholtz Association 13 November 2023 Slide 6 33

https://github.com/ROCmSoftwarePlatform/hipfort
https://www.khronos.org/sycl/
https://github.com/intel/llvm/blob/sycl/sycl/doc/GetStartedGuide.md#build-dpc-toolchain-with-support-for-nvidia-cuda
https://github.com/intel/llvm
https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compiler.html
https://developer.codeplay.com/products/oneapi/nvidia/2023.2.1/guides/get-started-guide-nvidia
https://developer.codeplay.com/products/oneapi/nvidia/2023.2.1/guides/get-started-guide-nvidia
https://github.com/intel/llvm/issues/49
https://lists.llvm.org/pipermail/cfe-dev/2019-January/060811.html
https://github.com/OpenSYCL/OpenSYCL/
https://github.com/codeplaysoftware/sycl-for-cuda/tree/cuda
https://developer.codeplay.com/products/computecpp/ce/home/


Detailed Description IV
LLVM is involved, SYCL implementations can rely on CUDA support in LLVM, which needs the
CUDA toolkit available for the final compilations parts beyond PTX. In order to translate a CUDA
code to SYCL, Intel offers the SYCLomatic conversion tool. [5, 6]
6 NVIDIA, AMD, Intel • SYCL • Fortran: SYCL is a C++-based programming model (C++17) and by
its nature does not support Fortran. Also, no pre-made bindings are available. [7]
7 NVIDIA • OpenACC • C++: OpenACC C/C++ on NVIDIA GPUs is supported most extensively
through the NVIDIA HPC SDK. Beyond the bundled libraries, frameworks, and other models, the
NVIDIA HPC SDK also features the nvc/nvc++ compilers, in which OpenACC support can be
enabled with the -acc -gpu. The support of OpenACC in this vendor-delivered compiler is very
comprehensive, it conforms to version 2.7 of the specification. A variety of compile options are
available to modify the compilation process. In addition to NVIDIA HPC SDK, good support is also
available in GCC since GCC 5.0, supporting OpenACC 2.6 through the nvptx architecture. The
compiler switch to enable OpenACC in gcc/g++ is -fopenacc, further options are available.

Member of the Helmholtz Association 13 November 2023 Slide 7 33

https://github.com/oneapi-src/SYCLomatic
https://developer.nvidia.com/hpc-sdk
https://docs.nvidia.com/hpc-sdk/compilers/hpc-compilers-user-guide/index.html#acc-use
https://gcc.gnu.org/wiki/OpenACC


Detailed Description V

Further, the Clacc compiler implements OpenACC support into the LLVM toolchain, adapting the
Clang frontend. As a central design aspect, it translates OpenACC to OpenMP as part of the
compilation process. OpenACC can be activated in a Clacc-clang via -fopenacc, and further
compiler options exist, mostly leveraging OpenMP options. A recent study by Jarmusch et al.
compared these compilers for coverage of the OpenACC 3.0 specification. [8–11]
8 NVIDIA • OpenACC • Fortran: Support of OpenACC Fortran on NVIDIA GPUs is similar to
OpenACC C/C++, albeit not identical. First, NVIDIA HPC SDK supports OpenACC in Fortran
through the included nvfortran compiler, with options like for the C/C++ compilers. In
addition, also GCC supports OpenACC through the gfortran compiler with identical compiler
options to the C/C++ compilers. Further, similar to OpenACC support in LLVM for C/C++ through
Clacc contributions, the LLVM frontend for Fortran, Flang (the successor of F18, not classic Flang),
supports OpenACC as well. Support was initially contributed through the Flacc project and now

Member of the Helmholtz Association 13 November 2023 Slide 8 33

https://csmd.ornl.gov/project/clacc
https://ieeexplore.ieee.org/document/10029456
https://developer.nvidia.com/hpc-sdk
https://gcc.gnu.org/wiki/OpenACC
https://flang.llvm.org/docs/
https://flang.llvm.org/docs/OpenACC.html
https://ieeexplore.ieee.org/document/9651310


Detailed Description VI
resides in the main LLVM project. Finally, the HPE Cray Programming Environment supports
OpenACC Fortran; in ftn-hacc. [8, 9, 12]
9 NVIDIA • OpenMP • C++: OpenMP in C/C++ is supported on NVIDIA GPUs (Offloading) through
multiple venues, similarly to OpenACC. First, the NVIDIA HPC SDK supports OpenMP GPU
offloading in both nvc and nvc++, albeit only a subset of the entire OpenMP 5.0 standard (see
the documentation for supported/unsupported features). The key compiler option is -mp. Also
in GCC, OpenMP offloading can be used to NVIDIA GPUs; the compiler switch is -fopenmp, with
options delivered through -foffload and -foffload-options. GCC currently supports
OpenMP 4.5 entirely, while OpenMP features of 5.0, 5.1, and, 5.2 are currently being
implemented. Similarly in Clang, where OpenMP offloading to NVIDIA GPUs is supported and
enabled through -fopenmp -fopenmp-targets=nvptx64, with offload architectures
selected via --offload-arch=native (or similar). Clang implements nearly all OpenMP 5.0
features andmost of OpenMP 5.1/5.2. In the HPE Cray Programming Environment, a subset of

Member of the Helmholtz Association 13 November 2023 Slide 9 33

https://www.hpe.com/psnow/doc/a50002303enw
https://cpe.ext.hpe.com/docs/cce/man7/intro_openacc.7.html
https://docs.nvidia.com/hpc-sdk/compilers/hpc-compilers-user-guide/index.html#openmp-use
https://docs.nvidia.com/hpc-sdk/compilers/hpc-compilers-user-guide/index.html#openmp-use
https://docs.nvidia.com/hpc-sdk/compilers/hpc-compilers-user-guide/index.html#openmp-subset
https://gcc.gnu.org/wiki/Offloading
https://gcc.gnu.org/onlinedocs/gcc/C-Dialect-Options.html#index-foffload
https://gcc.gnu.org/onlinedocs/gcc-13.1.0/libgomp/OpenMP-Implementation-Status.html
https://gcc.gnu.org/onlinedocs/gcc-13.1.0/libgomp/OpenMP-Implementation-Status.html
https://clang.llvm.org/docs/OffloadingDesign.html
https://clang.llvm.org/docs/OpenMPSupport.html#openmp-implementation-details
https://clang.llvm.org/docs/OpenMPSupport.html#openmp-implementation-details
https://cpe.ext.hpe.com/docs/cce/man7/intro_openmp.7.html


Detailed Description VII
OpenMP 5.0/5.1 is supported for NVIDIA GPUs. It can be activated through -fopenmp. Also
AOMP, AMD's Clang/LLVM-based compiler, supports NVIDIA GPUs. Support of OpenMP features
in the compilers was recently discussed in the OpenMP ECP BoF 2022. [8, 13–15]
10 NVIDIA • OpenMP • Fortran: OpenMP in Fortran is supported on NVIDIA GPUs nearly
identical to C/C++. NVIDIA HPC SDK's nvfortran implements support, GCC's gfortran,
LLVM's Flang (through -mp, and only when Flang is compiled via Clang), and also the HPE Cray
Programming Environment. [8, 13, 15, 16]
11 NVIDIA • Standard • C++: Standard language parallelism of C++, namely algorithms and data
structures of the parallel STL, is supported on NVIDIA GPUs through the nvc++ compiler of the
NVIDIA HPC SDK. The key compiler option is -stdpar=gpu, which enables offloading of parallel
algorithms to the GPU. Also, currently Open SYCL is in the process of implementing support for
pSTL algorithms, enabled via --hipsycl-stdpar. Further, NVIDIA GPUs can be targeted from
Intel's DPC++ compiler, enabling usage of pSTL algorithms implemented in Intel's Open Source

Member of the Helmholtz Association 13 November 2023 Slide 10 33

https://cpe.ext.hpe.com/docs/cce/man7/intro_openmp.7.html
https://cpe.ext.hpe.com/docs/cce/man7/intro_openmp.7.html
https://cpe.ext.hpe.com/docs/cce/man7/intro_openmp.7.html
https://github.com/ROCm-Developer-Tools/aomp/
https://www.openmp.org/wp-content/uploads/2022_ECP_Community_BoF_Days-OpenMP_RoadMap_BoF.pdf
https://docs.nvidia.com/hpc-sdk/compilers/hpc-compilers-user-guide/index.html#openmp-use
https://gcc.gnu.org/wiki/openmp
https://flang.llvm.org/docs/
https://flang.llvm.org/docs/GettingStarted.html#openmp-target-offload-build
https://cpe.ext.hpe.com/docs/cce/man7/intro_openmp.7.html
https://cpe.ext.hpe.com/docs/cce/man7/intro_openmp.7.html
https://docs.nvidia.com/hpc-sdk/compilers/c++-parallel-algorithms/index.html
https://docs.nvidia.com/hpc-sdk/compilers/c++-parallel-algorithms/index.html
https://github.com/OpenSYCL/OpenSYCL/pull/1088
https://github.com/OpenSYCL/OpenSYCL/pull/1088
https://intel.github.io/llvm-docs/GetStartedGuide.html#build-dpc-toolchain-with-support-for-nvidia-cuda
https://intel.github.io/llvm-docs/GetStartedGuide.html#build-dpc-toolchain-with-support-for-nvidia-cuda


Detailed Description VIII

oneDPL (oneAPI DPC++ Library) on NVIDIA GPUs. Finally, a current proposal in the LLVM
community aims at implementing pSTL support through an OpenMP backend. [6, 8, 17]
12 NVIDIA • Standard • Fortran: Standard language parallelism of Fortran, mainly do
concurrent, is supported on NVIDIA GPUs through the nvfortran compiler of the NVIDIA HPC
SDK. As for the C++ case, it is enabled through the -stdpar=gpu compiler option. [8]
13 NVIDIA • Kokkos • C++: Kokkos supports NVIDIA GPUs in C++. Kokkos has multiple backends
available with NVIDIA GPU support: a native CUDA C/C++ backend (using nvcc), an NVIDIA HPC
SDK backend (using CUDA support in nvc++), and a Clang backend, using either Clang's CUDA
support directly or via the OpenMP offloading facilities (via clang++). [18]
14 NVIDIA, AMD, Intel • Kokkos • Fortran: Kokkos is a C++ programmingmodel, but an official
compatibility layer for Fortran (Fortran Language Compatibility Layer, FLCL) is available.
Through this layer, GPUs can be used as supported by Kokkos C++. [18]

Member of the Helmholtz Association 13 November 2023 Slide 11 33

https://github.com/oneapi-src/oneDPL
https://discourse.llvm.org/t/rfc-openmp-offloading-backend-for-c-parallel-algorithms/73468
https://discourse.llvm.org/t/rfc-openmp-offloading-backend-for-c-parallel-algorithms/73468
https://developer.nvidia.com/blog/accelerating-fortran-do-concurrent-with-gpus-and-the-nvidia-hpc-sdk/
https://developer.nvidia.com/blog/accelerating-fortran-do-concurrent-with-gpus-and-the-nvidia-hpc-sdk/
https://github.com/kokkos/kokkos
https://kokkos.github.io/kokkos-core-wiki/requirements.html
https://docs.nersc.gov/development/programming-models/kokkos/
https://github.com/kokkos/kokkos-fortran-interop


Detailed Description IX
15 NVIDIA • ALPAKA • C++: Alpaka supports NVIDIA GPUs in C++ (C++17), either through the
NVIDIA CUDA C/C++ compiler nvcc or LLVM/Clang's support of CUDA in clang++. [19]
16 NVIDIA, AMD, Intel • ALPAKA • Fortran: Alpaka is a C++ programmingmodel and no
ready-made Fortran support exists. [19]
17 NVIDIA • etc • Python: Using NVIDIA GPUs from Python code can be achieved through
multiple venues. NVIDIA itself offers CUDA Python, a package delivering low-level interfaces to
CUDA C/C++. Typically, code is not directly written using CUDA Python, but rather CUDA Python
functions as a backend for higher level models. CUDA Python is available on PyPI as
cuda-python. An alternative to CUDA Python from the community is PyCUDA, which adds
some higher-level features and functionality and comes with its own C++ base layer. PyCUDA is
available on PyPI as pycuda. The most well-known, higher-level abstraction is CuPy, which
implements primitives known from Numpy with GPU support, offers functionality for defining
custom kernels, and bindings to libraries. CuPy is available on PyPI as cupy-cuda12x (for CUDA

Member of the Helmholtz Association 13 November 2023 Slide 12 33

https://github.com/alpaka-group/alpaka
https://github.com/NVIDIA/cuda-python
https://pypi.org/project/cuda-python/
https://github.com/inducer/pycuda
https://pypi.org/project/pycuda/
https://cupy.dev/
https://pypi.org/project/cupy-cuda12x/


Detailed Description X
12.x). Two packages arguably providing even higher abstractions are Numba and CuNumeric.
Numba offers access to NVIDIA GPUs and features acceleration of functions through Python
decorators (functions wrapping functions); it is available as numba on PyPI. cuNumeric, a project
by NVIDIA, allows to access the GPU via Numpy-inspired functions (like CuPy), but utilizes the
Legate library to transparently scale to multiple GPUs. [20–24]
18 AMD • CUDA • C++: While CUDA is not directly supported on AMD GPUs, it can be translated
to HIP through AMD's HIPIFY. Using hipcc and HIP_PLATFORM=amd in the environment,
CUDA-to-HIP-translated code can be executed. [3]
19 AMD • CUDA • Fortran: No direct support for CUDA Fortran on AMD GPUs is available, but
AMD offers a source-to-source translator, GPUFORT, to convert some CUDA Fortran to either
Fortran with OpenMP (via AOMP) or Fortran with HIP bindings and extracted C kernels (via
hipfort). As stated in the project repository, the covered functionality is driven by use-case
requirements; the last commit is two years old. [25]

Member of the Helmholtz Association 13 November 2023 Slide 13 33

http://numba.pydata.org/
https://pypi.org/project/numba/
https://github.com/nv-legate/cunumeric
https://github.com/nv-legate/legate.core
https://github.com/ROCm-Developer-Tools/HIPIFY
https://github.com/ROCmSoftwarePlatform/gpufort
https://github.com/ROCm-Developer-Tools/aomp
https://github.com/ROCmSoftwarePlatform/hipfort
https://github.com/ROCmSoftwarePlatform/gpufort#limitations
https://github.com/ROCmSoftwarePlatform/gpufort#limitations


Detailed Description XI

20 AMD • HIP • C++: HIP C++ is the native programmingmodel for AMD GPUs and, as such, fully
supports the devices. It is part of AMD's GPU-targeted ROCm platform, which includes compilers,
libraries, tool, and drivers andmostly consists of Open Source Software. HIP code can be
compiled with hipcc, utilizing the correct environment variables (like HIP_PLATFORM=amd)
and compiler options (like --offload-arch=gfx90a). hipcc is a compiler driver (wrapper
script) which assembles the correct compilation string, finally calling AMD's Clang compiler to
generate host/device code (using the AMDGPU backend). [3]
21 AMD • SYCL • C++: No direct support for SYCL is available by AMD for their GPU devices. But
like for the NVIDIA ecosystem, SYCL C++ can be used on AMD GPUs through third-party software.
First, Open SYCL (previously hipSYCL) supports AMD GPUs, relying on HIP/ROCm support in
Clang. All available internal compilation models can target AMD GPUs. Second, also AMD GPUs
can be targeted through both DPC++, Intel's LLVM-based Open Source compiler, and the

Member of the Helmholtz Association 13 November 2023 Slide 14 33

https://github.com/ROCm-Developer-Tools/HIP
https://rocm.docs.amd.com/en/latest/
https://github.com/ROCm-Developer-Tools/HIPCC
https://github.com/RadeonOpenCompute/llvm-project
https://llvm.org/docs/AMDGPUUsage.html
https://github.com/OpenSYCL/OpenSYCL
https://github.com/OpenSYCL/OpenSYCL/blob/develop/doc/compilation.md
https://github.com/intel/llvm/blob/sycl/sycl/doc/GetStartedGuide.md#build-dpc-toolchain-with-support-for-hip-amd


Detailed Description XII
commercial version included in the oneAPI toolkit (via an AMD ROCm plugin). In comparison to
SYCL support for CUDA, no conversion tool like SYCLomatic exists. [5, 6]
22 AMD • OpenACC • C++: OpenACC C/C++ is not supported by AMD itself, but third-party
support is available for AMD GPUs through GCC or Clacc (similarly to their support of OpenACC
C/C++ for NVIDI GPUS). In GCC, OpenACC support can be activated through -fopenacc, and
further specified for AMD GPUs with, for example,
-foffload=amdgcn-amdhsa="-march=gfx906". Clacc also supports OpenACC C/C++ on
AMD GPUs by translating OpenACC to OpenMP and using LLVM's AMD support. The enabling
compiler switch is -fopenacc, and AMD GPU targets can be further specified by, for example,
-fopenmp-targets=amdgcn-amd-amdhsa. Intel's OpenACC to OpenMP source-to-source
translator can also be used for AMD's platform. [9, 10]
23 AMD • OpenACC • Fortran: No native support for OpenACC on AMD GPUs for Fortran is
available, but AMD supplies GPUFORT, a research project to source-to-source translate OpenACC

Member of the Helmholtz Association 13 November 2023 Slide 15 33

https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compiler.html
https://developer.codeplay.com/products/oneapi/amd/2023.2.1/guides/get-started-guide-amd
https://gcc.gnu.org/wiki/Offloading
https://csmd.ornl.gov/project/clacc
https://csmd.ornl.gov/project/clacc
/%22https://github.com/intel/intel-application-migration-tool-for-openacc-to-openmp/%22
/%22https://github.com/intel/intel-application-migration-tool-for-openacc-to-openmp/%22
https://github.com/ROCmSoftwarePlatform/gpufort


Detailed Description XIII

Fortran to either Fortran with added OpenMP or Fortran with HIP bindings and extracted C
kernels (using hipfort). The covered functionality of GPUFORT is driven by use-case
requirements, the last commit is two years old. Support for OpenACC Fortran is also available by
the community through GCC (gfortran) and upcoming in LLVM (Flacc). Also the HPE Cray
Programming Environment supports OpenACC Fortran on AMD GPUs. In addition, the translator
tool to convert OpenACC source to OpenMP source by Intel can be used. [9, 12, 25]
24 AMD • OpenMP • C++: AMD offers AOMP, a dedicated, Clang-based compiler for using
OpenMP C/C++ on AMD GPUs (offloading). AOMP is usually shipped with ROCm. The compiler
supports most OpenMP 4.5 and some OpenMP 5.0 features. Since the compiler is Clang-based,
the usual Clang compiler options apply (-fopenmp to enable OpenMP parsing, and others). Also
in the upstream Clang compiler, AMD GPUs can be targeted through OpenMP; as outlined for
NVIDIA GPUs, the support for OpenMP 5.0 is nearly complete, and support for OpenMP 5.1/5.2 is

Member of the Helmholtz Association 13 November 2023 Slide 16 33

https://github.com/ROCmSoftwarePlatform/hipfort
https://gcc.gnu.org/onlinedocs/gfortran/OpenACC.html
https://ieeexplore.ieee.org/document/9651310
https://cpe.ext.hpe.com/docs/cce/man7/intro_openacc.7.html
https://cpe.ext.hpe.com/docs/cce/man7/intro_openacc.7.html
https://github.com/intel/intel-application-migration-tool-for-openacc-to-openmp
https://github.com/intel/intel-application-migration-tool-for-openacc-to-openmp
https://github.com/ROCm-Developer-Tools/aomp
https://www.exascaleproject.org/wp-content/uploads/2022/02/Elwasif-ECP-sollve_vv_final.pdf
https://clang.llvm.org/docs/OffloadingDesign.html


Detailed Description XIV
comprehensive. In addition, the HPE Cray Programming Environment supports OpenMP on AMD
GPUs. [15, 26, 27]
25 AMD • OpenMP • Fortran: Through AOMP, AMD supports OpenMP offloading to AMD GPUs in
Fortran, using the flang executable and Clang-typical compiler options (foremost -fopenmp).
Support for AMD GPUs is also available through the HPE Cray Programming Environment. [15,
26]
26 AMD • Standard • C++: AMD does not yet provide production-grade support for
Standard-language parallelism in C++ for their GPUs. Currently under development is roc-stdpar
(ROCm Standard Parallelism Runtime Implementation), which aims to supply pSTL algorithms
on the GPU andmerge the implementation with upstream LLVM. Support for GPU-parallel
algorithms is enabled with -stdpar. An alternative proposal in the LLVM community aims to
support the pSTL via an OpenMP backend. Also Open SYCL is in the process of creating support
for C++ parallel algorithms via a --hipsycl-stdpar switch. By using Open SYCL's backends,

Member of the Helmholtz Association 13 November 2023 Slide 17 33

https://cpe.ext.hpe.com/docs/cce/man7/intro_openmp.7.html
https://github.com/ROCm-Developer-Tools/aomp
https://cpe.ext.hpe.com/docs/cce/man7/intro_openmp.7.html
https://github.com/ROCmSoftwarePlatform/roc-stdpar
https://discourse.llvm.org/t/rfc-adding-c-parallel-algorithm-offload-support-to-clang-llvm/72159
https://discourse.llvm.org/t/rfc-openmp-offloading-backend-for-c-parallel-algorithms/73468
https://github.com/OpenSYCL/OpenSYCL/pull/1088
https://github.com/OpenSYCL/OpenSYCL/pull/1088


Detailed Description XV

also AMD GPUs are supported. Intel provides the Open Source oneDPL (oneAPI DPC++ Library)
which implements pSTL algorithms through the DPC++ compiler (see also C++ Standard
Parallelism for Intel GPUs). DPC++ has experimental support for AMD GPUs. [6, 17, 28]
27 AMD • Standard • Fortran: There is no (known) way to launch Standard-based parallel
algorithms in Fortran on AMD GPUs.
28 AMD • Kokkos • C++: Kokkos supports AMD GPUs in C++ mainly through the HIP/ROCm
backend. Also, an OpenMP offloading backend is available. [18]
29 AMD • ALPAKA • C++: Alpaka supports AMD GPUs in C++ through HIP or through an OpenMP
backend. [19]
30 AMD • etc • Python: AMD does not officially support GPU programming with Python, but
third-party solutions are available. CuPy experimentally supports AMD GPUs/ROCm. The
package can be found on PyPI as cupy-rocm-5-0. Numba once had support for AMD GPUs, but

Member of the Helmholtz Association 13 November 2023 Slide 18 33

https://github.com/oneapi-src/oneDPL
https://oneapi-src.github.io/oneDPL/parallel_api_main.html
https://intel.github.io/llvm-docs/GetStartedGuide.html#build-dpc-toolchain-with-support-for-hip-amd
https://github.com/kokkos/kokkos
https://github.com/alpaka-group/alpaka
https://docs.cupy.dev/en/latest/install.html#using-cupy-on-amd-gpu-experimental
https://numba.pydata.org/numba-doc/latest/roc/index.html


Detailed Description XVI

it is not maintained anymore. Low-level bindings from Python to HIP exist, for example PyHIP
(available as pyhip-interface on PyPI). Bindings to OpenCL also exist (PyOpenCL). [20]
31 Intel • CUDA • C++: Intel itself does not support CUDA C/C++ on their GPUs. They offer
SYCLomatic, though, an Open Source tool to translate CUDA code to SYCL code, allowing it to run
on Intel GPUs. The commercial variant of SYCLomatic is called the DPC++ Compatibility Tool and
bundled with oneAPI toolkit. The community project chipStar (previously called CHIP-SPV,
recently released a 1.0 version) allows to target Intel GPUs from CUDA C/C++ code by using the
CUDA support in Clang. chipStar delivers a Clang-wrapper, cuspv, which replaces calls to nvcc.
Also ZLUDA exists, which implements CUDA support for Intel GPUs; it is not maintained anymore,
though. [29–31]
32 Intel • CUDA • Fortran: No direct support exists for CUDA Fortran on Intel GPUs. A simple
example to bind SYCL to a (CUDA) Fortran program (via ISO C BINDING) can be found on GitHub.

Member of the Helmholtz Association 13 November 2023 Slide 19 33

https://numba.readthedocs.io/en/stable/release-notes.html#version-0-54-0-19-august-2021
https://github.com/jatinx/PyHIP
https://documen.tician.de/pyopencl/
https://github.com/oneapi-src/SYCLomatic
https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compatibility-tool.html
https://github.com/CHIP-SPV/chipStar
https://github.com/CHIP-SPV/chipStar/blob/main/docs/Using.md#compiling-cuda-application-directly-with-chipstar
https://github.com/vosen/ZLUDA
https://github.com/codeplaysoftware/SYCL-For-CUDA-Examples/tree/master/examples/fortran_interface


Detailed Description XVII
33 Intel • HIP • C++: No native support for HIP C++ on Intel GPUs exists. The Open Source
third-party project chipStar (previously called CHIP-SPV), though, supports HIP on Intel GPUs by
mapping it to OpenCL or Intel's Level Zero runtime. The compiler uses an LLVM-based toolchain
and relies on its HIP and SPIR-V functionality. [30]
34 Intel • HIP • Fortran: HIP for Fortran does not exist, and also no translation efforts for Intel
GPUs.
35 Intel • SYCL • C++: SYCL is a C++17-based standard and selected by Intel as the prime
programming model for Intel GPUs. Intel implements SYCL support for their GPUs via DPC++, an
LLVM-based compiler toolchain. Currently, Intel maintains an own fork of LLVM, but plans to
upstream the changes to themain LLVM repository. Based on DPC++, Intel releases a commercial
Intel oneAPI DPC++ compiler as part of the oneAPI toolkit. The third-party project Open SYCL also
supports Intel GPUs, by leveraging/creating LLVM support (either SPIR-V or Level Zero). A
previous solution for targeting Intel GPUs from SYCL was ComputeCpp of CodePlay. The project

Member of the Helmholtz Association 13 November 2023 Slide 20 33

https://github.com/CHIP-SPV/chipStar
https://github.com/CHIP-SPV/chipStar/blob/main/docs/Using.md#compiling-a-hip-application-using-chipstar
https://www.khronos.org/sycl/
https://github.com/intel/llvm
https://lists.llvm.org/pipermail/cfe-dev/2019-January/060811.html
https://lists.llvm.org/pipermail/cfe-dev/2019-January/060811.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compiler.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compiler.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/toolkits.html
https://developer.codeplay.com/products/computecpp/ce/home/


Detailed Description XVIII
became unsupported in September 2023 (in favor of implementations to the DPC++ project). [5,
6, 31]
36 Intel • OpenACC • C++: No direct support for OpenACC C/C++ is available for Intel GPUs. Intel
offers a Python-based tool to translate source files with OpenACC C/C++ to OpenMP C/C++, the
Application Migration Tool for OpenACC to OpenMP API. [32]
37 Intel • OpenACC • Fortran: Also for OpenACC Fortran, no direct support is available for Intel
GPUs. Intel's source-to-source translation tool from OpenACC to OpenMP also supports Fortran,
though. [32]
38 Intel • OpenMP • C++: OpenMP is a second key programmingmodel for Intel GPUs and
well-supported by Intel. For C++, the support is built into the commercial version of DPC++/C++,
Intel oneAPI DPC++/C++. All OpenMP 4.5 andmost OpenMP 5.0 and 5.1 features are supported.
OpenMP can be enabled through the -qopenmp compiler option of icpx; a suitable offloading
target can be given via -fopenmp-targets=spir64. [31]

Member of the Helmholtz Association 13 November 2023 Slide 21 33

https://github.com/intel/intel-application-migration-tool-for-openacc-to-openmp
https://github.com/intel/intel-application-migration-tool-for-openacc-to-openmp
https://www.intel.com/content/www/us/en/develop/documentation/get-started-with-cpp-fortran-compiler-openmp/top.html
https://www.intel.com/content/www/us/en/developer/articles/technical/openmp-features-and-extensions-supported-in-icx.html


Detailed Description XIX
39 Intel • OpenMP • Fortran: OpenMP in Fortran is Intel's main selected route to bring Fortran
applications to their GPUs. OpenMP offloading in Fortran is supported through Intel's Fortran
Compiler ifx (the new LLVM-based version, not the Fortran Compiler Classic), part of the oneAPI
HPC Toolkit. Similarly to C++, OpenMP offloading can be enabled through a combination of
-qopenmp and -fopenmp-targets=spir64. [31]
40 Intel • Standard • C++: Intel supports C++ standard parallelism (pSTL) through the Open
Source oneDPL (oneAPI DPC++ Library), also available as part of the oneAPI toolkit. It
implements the pSTL on top of the DPC++ compiler, algorithms, data structures, and policies live
in the oneapi::dpl:: namespace. In addition, Open SYCL is current adding support for C++
parallel algorithms, to be enabled via the --hipsycl-stdpar compiler option. [17]
41 Intel • Standard • Fortran: Standard language parallelism of Fortran is supported by Intel on
their GPUs through the Intel Fortran Compiler ifx (the new, LLVM-based compiler, not the
Classic version), part of the oneAPI HPC toolkit. In the oneAPI update 2022.1, the do

Member of the Helmholtz Association 13 November 2023 Slide 22 33

https://www.intel.com/content/www/us/en/docs/fortran-compiler/developer-guide-reference/2023-2/overview.html
https://www.intel.com/content/www/us/en/docs/fortran-compiler/developer-guide-reference/2023-2/overview.html
https://oneapi-src.github.io/oneDPL/index.html
https://oneapi-src.github.io/oneDPL/parallel_api_main.html
https://github.com/OpenSYCL/OpenSYCL/pull/1088
https://github.com/OpenSYCL/OpenSYCL/pull/1088
https://www.intel.com/content/www/us/en/developer/articles/release-notes/fortran-compiler-release-notes.html
https://www.intel.com/content/www/us/en/docs/fortran-compiler/developer-guide-reference/2023-2/do-concurrent.html


Detailed Description XX
concurrent support was added and extended in further releases. It can be used via the
-qopenmp compiler option together with -fopenmp-target-do-concurrent and
-fopenmp-targets=spir64. [31]
42 Intel • Kokkos • C++: No direct support by Intel for Kokkos is available, but Kokkos supports
Intel GPUs through an experimental SYCL backend. [18]
43 Intel • ALPAKA • C++: Since v.0.9.0, Alpaka contains experimental SYCL support with which
Intel GPUs can be targeted. Also, Alpaka can fall back to an OpenMP backend.
44 Intel • etc • Python: Intel GPUs can be used from Python through three notable packages.
First, Intel's Data Parallel Control (dpctl) implements low-level Python bindings to SYCL
functionality. It is available on PyPI as dpctl. Second, a higher level, Intel's Data-parallel
Extension to Numba (numba-dpex) supplies an extension to the JIT functionality of Numba to
support Intel GPUs. It is available from Anaconda as numba-dpex. Finally, and arguably highest
level, Intel's Data Parallel Extension for Numpy (dpnp) builds up on the Numpy API and extends

Member of the Helmholtz Association 13 November 2023 Slide 23 33

https://www.intel.com/content/www/us/en/docs/fortran-compiler/developer-guide-reference/2023-2/do-concurrent.html
https://www.intel.com/content/www/us/en/docs/fortran-compiler/developer-guide-reference/2023-2/do-concurrent.html
https://www.intel.com/content/www/us/en/docs/fortran-compiler/developer-guide-reference/2023-2/do-concurrent.html
https://kokkos.github.io/kokkos-core-wiki/
https://github.com/alpaka-group/alpaka/releases/tag/0.9.0
https://github.com/alpaka-group/alpaka
https://github.com/IntelPython/dpctl
https://pypi.org/project/dpctl/
https://github.com/IntelPython/numba-dpex
https://github.com/IntelPython/numba-dpex
https://anaconda.org/intel/numba-dpex
https://github.com/IntelPython/dpnp


Detailed Description XXI

some functions with Intel GPU support. It is available on PyPI as dpnp, although latest versions
appear to be available only on GitHub. [33–35]

Member of the Helmholtz Association 13 November 2023 Slide 24 33

https://pypi.org/project/dpnp/
https://github.com/IntelPython/dpnp/releases


Appendix
References



References I

[1] NVIDIA. CUDA Toolkit. 2023. URL: https://developer.nvidia.com/cuda-toolkit
(page 19).

[2] NVIDIA. CUDA Fortran. 2023. URL: https://developer.nvidia.com/cuda-fortran
(visited on 10/26/2023) (page 20).

[3] AMD. HIP. 2023. URL: https://rocm.docs.amd.com/projects/HIP/en/latest/
(pages 20, 28, 29).

[4] AMD. hipfort. 2023. URL:
https://rocm.docs.amd.com/projects/hipfort/en/latest/ (page 21).

[5] Intel and Contributors. oneAPI DPC++ Compiler. LLVM-fork with DPC++ support by Intel.
2023. URL: https://github.com/intel/llvm (pages 22, 30, 36).

Member of the Helmholtz Association 13 November 2023 Slide 26 33

https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-fortran
https://rocm.docs.amd.com/projects/HIP/en/latest/
https://rocm.docs.amd.com/projects/hipfort/en/latest/
https://github.com/intel/llvm


References II

[6] Aksel Alpay et al. “Exploring the possibility of a hipSYCL-based implementation of oneAPI.”
In: International Workshop on OpenCL. ACM, May 2022. DOI: 10.1145/3529538.3530005.
URL: https://doi.org/10.1145/3529538.3530005 (pages 22, 26, 30, 33, 36).

[7] Khronos Group. SYCL. 2023. URL: https://www.khronos.org/sycl/ (page 22).

[8] NVIDIA. NVIDIA HPC SDK. 2023. URL: https://developer.nvidia.com/hpc-sdk
(pages 23–26).

[9] GCC. GCC OpenACC. 2023. URL: https://gcc.gnu.org/wiki/OpenACC (pages 23, 24,
30, 31).

[10] Joel E. Denny, Seyong Lee, and Jeffrey S. Vetter. “CLACC: Translating OpenACC to OpenMP
in Clang.” In: 2018 IEEE/ACM 5th Workshop on the LLVM Compiler Infrastructure in HPC
(LLVM-HPC). 2018, pp. 18–29. DOI: 10.1109/LLVM-HPC.2018.8639349 (pages 23, 30).

Member of the Helmholtz Association 13 November 2023 Slide 27 33

https://doi.org/10.1145/3529538.3530005
https://doi.org/10.1145/3529538.3530005
https://www.khronos.org/sycl/
https://developer.nvidia.com/hpc-sdk
https://gcc.gnu.org/wiki/OpenACC
https://doi.org/10.1109/LLVM-HPC.2018.8639349


References III

[11] Aaron Jarmusch et al. “Analysis of Validating and Verifying OpenACC Compilers 3.0 and
Above.” In: 2022 Workshop on Accelerator Programming Using Directives (WACCPD). 2022,
pp. 1–10. DOI: 10.1109/WACCPD56842.2022.00006 (page 23).

[12] Valentin Clement and Jeffrey S. Vetter. “Flacc: Towards OpenACC support for Fortran in the
LLVM Ecosystem.” In: 2021 IEEE/ACM 7th Workshop on the LLVM Compiler Infrastructure in
HPC (LLVM-HPC). 2021, pp. 12–19. DOI: 10.1109/LLVMHPC54804.2021.00007
(pages 24, 31).

[13] GCC Developers. GCC OpenMP. 2023. URL: https://gcc.gnu.org/wiki/openmp
(page 25).

[14] LLVM/Clang Developers. Clang OpenMP. 2023. URL:
https://clang.llvm.org/docs/OpenMPSupport.html (page 25).

Member of the Helmholtz Association 13 November 2023 Slide 28 33

https://doi.org/10.1109/WACCPD56842.2022.00006
https://doi.org/10.1109/LLVMHPC54804.2021.00007
https://gcc.gnu.org/wiki/openmp
https://clang.llvm.org/docs/OpenMPSupport.html


References IV

[15] HPE. HPE Cray Programming Environment. 2023. URL:
https://www.hpe.com/psnow/doc/a50002303enw (pages 25, 32).

[16] LLVM/Flang. Flang. 2023. URL: https://flang.llvm.org/ (page 25).

[17] Intel. oneDPL. 2023. URL: https://oneapi-src.github.io/oneDPL/index.html
(pages 26, 33, 37).

[18] Christian R. Trott et al. “Kokkos 3: Programming Model Extensions for the Exascale Era.” In:
IEEE Transactions on Parallel and Distributed Systems 33.4 (2022), pp. 805–817. DOI:
10.1109/TPDS.2021.3097283 (pages 26, 33, 38).

[19] A. Matthes et al. “Tuning and optimization for a variety of many-core architectures without
changing a single line of implementation code using the Alpaka library.” In: June 2017.
arXiv: 1706.10086. URL: https://arxiv.org/abs/1706.10086 (pages 27, 33).

Member of the Helmholtz Association 13 November 2023 Slide 29 33

https://www.hpe.com/psnow/doc/a50002303enw
https://flang.llvm.org/
https://oneapi-src.github.io/oneDPL/index.html
https://doi.org/10.1109/TPDS.2021.3097283
https://arxiv.org/abs/1706.10086
https://arxiv.org/abs/1706.10086


References V
[20] NVIDIA. CUDA Python. 2023. URL:

https://nvidia.github.io/cuda-python/index.html (pages 28, 34).

[21] Andreas Kloeckner et al. PyCUDA. Version v2022.2.2. July 2023. DOI:
10.5281/zenodo.8121901. URL: https://doi.org/10.5281/zenodo.8121901
(page 28).

[22] Ryosuke Okuta et al. “CuPy: A NumPy-Compatible Library for NVIDIA GPU Calculations.” In:
Proceedings of Workshop on Machine Learning Systems (LearningSys) in The Thirty-first
Annual Conference on Neural Information Processing Systems (NIPS). 2017. URL:
http://learningsys.org/nips17/assets/papers/paper_16.pdf (page 28).

[23] Siu Kwan Lam et al. numba/numba: Version 0.57.1. Version 0.57.1. June 2023. DOI:
10.5281/zenodo.8087361. URL: https://doi.org/10.5281/zenodo.8087361
(page 28).

Member of the Helmholtz Association 13 November 2023 Slide 30 33

https://nvidia.github.io/cuda-python/index.html
https://doi.org/10.5281/zenodo.8121901
https://doi.org/10.5281/zenodo.8121901
http://learningsys.org/nips17/assets/papers/paper_16.pdf
https://doi.org/10.5281/zenodo.8087361
https://doi.org/10.5281/zenodo.8087361


References VI

[24] NVIDIA. cuNumeric. 2023. URL: https://developer.nvidia.com/cunumeric
(page 28).

[25] AMD. GPUFORT. 2023. URL:
https://github.com/ROCmSoftwarePlatform/gpufort (pages 28, 31).

[26] AMD. AOMP. 2023. URL: https://github.com/ROCm-Developer-Tools/aomp
(page 32).

[27] ECP Exascale Computing Project. OpenMP Roadmap for Accelerators Across DOE
Pre-Exascale/Exascale Machines. 2022. URL: https://www.openmp.org/wp-
content/uploads/2022_ECP_Community_BoF_Days-OpenMP_RoadMap_BoF.pdf
(page 32).

Member of the Helmholtz Association 13 November 2023 Slide 31 33

https://developer.nvidia.com/cunumeric
https://github.com/ROCmSoftwarePlatform/gpufort
https://github.com/ROCm-Developer-Tools/aomp
https://www.openmp.org/wp-content/uploads/2022_ECP_Community_BoF_Days-OpenMP_RoadMap_BoF.pdf
https://www.openmp.org/wp-content/uploads/2022_ECP_Community_BoF_Days-OpenMP_RoadMap_BoF.pdf


References VII

[28] AMD. roc-stdpar. 2023. URL:
https://github.com/ROCmSoftwarePlatform/roc-stdpar (page 33).

[29] Intel. SYCLomatic. 2023. URL: https://github.com/oneapi-src/SYCLomatic
(page 34).

[30] Jisheng Zhao et al. “HIPLZ: Enabling Performance Portability for Exascale Systems.” In:
Euro-Par 2022: Parallel Processing Workshops. Ed. by Jeremy Singer et al. Cham: Springer
Nature Switzerland, 2023, pp. 197–210. ISBN: 978-3-031-31209-0 (pages 34, 35).

[31] Intel. oneAPI. 2023. URL: https://www.intel.com/content/www/us/en/
developer/tools/oneapi/toolkits.html (pages 34, 36–38).

Member of the Helmholtz Association 13 November 2023 Slide 32 33

https://github.com/ROCmSoftwarePlatform/roc-stdpar
https://github.com/oneapi-src/SYCLomatic
https://www.intel.com/content/www/us/en/developer/tools/oneapi/toolkits.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/toolkits.html


References VIII

[32] Intel. Intel Application Migration Tool for OpenACC to OpenMP API. 2023. URL:
https://github.com/intel/intel-application-migration-tool-for-
openacc-to-openmp (page 36).

[33] Intel. Data Parallel Control. 2023. URL: https://github.com/IntelPython/dpctl
(page 39).

[34] Intel. Data-parallel Extension to Numba. 2023. URL:
https://github.com/IntelPython/numba-dpex (page 39).

[35] Intel. Data Parallel Extension for Numpy. 2023. URL:
https://github.com/IntelPython/dpnp (page 39).

Member of the Helmholtz Association 13 November 2023 Slide 33 33

https://github.com/intel/intel-application-migration-tool-for-openacc-to-openmp
https://github.com/intel/intel-application-migration-tool-for-openacc-to-openmp
https://github.com/IntelPython/dpctl
https://github.com/IntelPython/numba-dpex
https://github.com/IntelPython/dpnp

	Outline
	Introduction
	Table
	Descriptions
	Discussions
	Conclusion
	Appendix
	Appendix
	Descriptions
	References

	References


