

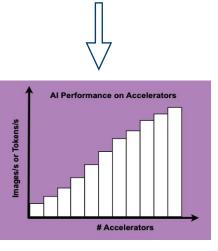
Performance and Power: Systematic Evaluation of Al Workloads on Accelerators with CARAML

Performance, Portability, and Productivity in HPC Workshop (SC24)

18.11.2024 I Chelsea Maria John | Forschungszentrum Jülich, Jülich Supercomputing Centre

- Power measurement using jpwr^[3]

Introduction


Motivation: Automated, reproducible AI hardware ٠ assessment; quickly determine strengths

CARAML BENCHMARK SUITE

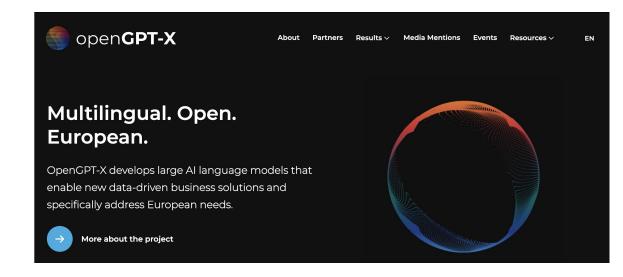
- Compact Automated Reproducible Assessment of Machine Learning workloads (<u>CARAML^[1]</u>) on novel accelerators
- Compact, automation and reproducibility using
 - **JUBE**^[2] benchmarking environment
 - Apptainer containers
- AI Performance assessment with
 - PyTorch with torch.distributed
 - TensorFlow with Horovod

O PyTorchTensorFlow jpwr

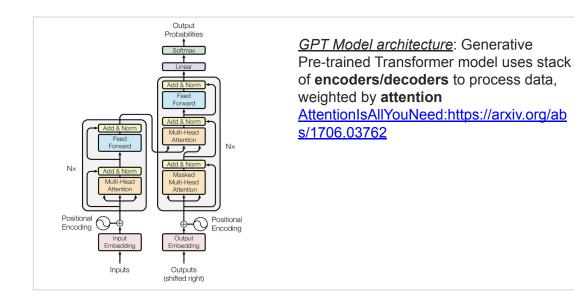
JUBE

Introduction

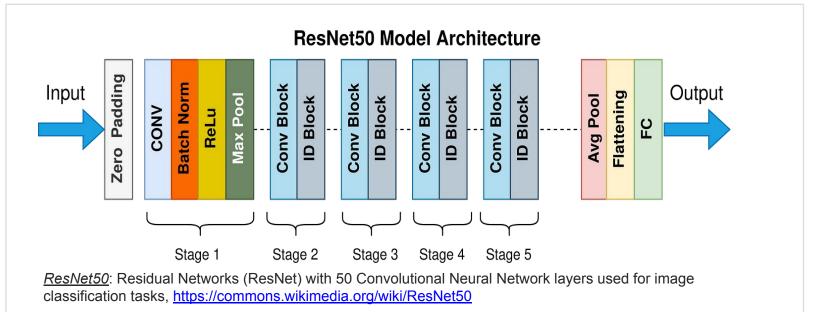
- **Motivation:** Automated, reproducible AI hardware assessment; quickly determine strengths
- Compact Automated Reproducible Assessment of Machine Learning workloads (<u>CARAML^[1]</u>) on novel accelerators
- Compact, automation and reproducibility using
 - JUBE^[2] benchmarking environment
 - Apptainer containers
- AI Performance assessment with
 - PyTorch with torch.distributed
 - TensorFlow with Horovod
- Power measurement using jpwr^[3]


Open Source Frameworks: [1]: <u>https://github.com/FZJ-JSC/CARAML</u> [2]: <u>https://github.com/FZJ-JSC/JUBE</u> [3]: <u>https://github.com/FZJ-JSC/jpwr</u>

Natural Language Processing (NLP) Benchmark


• GPT-based LLM training (OpenGPT-X: https://opengpt-x.de/en/)

Natural Language Processing (NLP) Benchmark


• GPT-based LLM training (OpenGPT-X: https://opengpt-x.de/en/)

Computer Vision (CV) Benchmark

• ResNet50 model training

Benchmark Models

[4]:https://huggingface.co/bigscience/ oscar-1GB.jsonl.xz
[5]: https://image-net.org/download

Benchmark	NLP Training	CV Training	
Model	GPT-based LLM model training on OSCAR ^[4] / synthetic data	ResNet50 model training on ImageNet ^[5] / Synthetic data	
Performance Metrics	Tokens/sEnergy/GPUTokens/Energy	 Images/s Energy/Epoch (1 Epoch: 10⁶ images) Images/Energy 	
Reference Codes	 <u>NVIDIA/Megatron-LM</u> <u>Bigcode-project/Megatron-LM</u> (ported for AMD) <u>Graphcore/examples/nlp</u> <u>FZJ-JSC/jubench-megatron-Im</u> 	 <u>Tensorflow/benchmarks</u> <u>Graphcore/examples/vision</u> <u>FZJ-JSC/jubench-resnet</u> 	

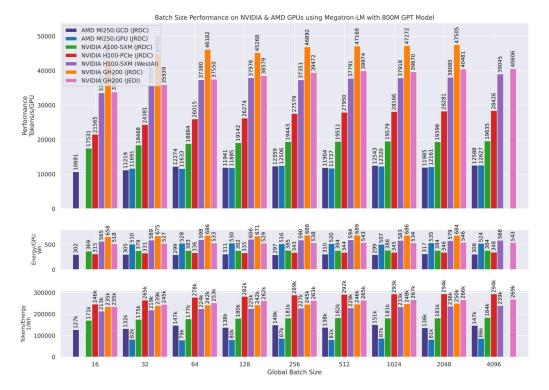
ACCELERATORS

JURECA, JEDI & WestAI Systems

[6]: <u>https://apps.fz-juelich.de/jsc/hps/jureca</u>
[7]: <u>https://apps.fz-juelich.de/jsc/hps/jedi</u>
[8]: <u>https://westai.de/</u>

Platform	Accelerator (Acc)	CPU	CPU - ACC Interconnect	Acc - Acc Intraconnect	Acc - Acc Interconnect	Memory	TDP / Device
GH200 (JEDI)			NVLink-C2C 900 GB/s	NVLink4 900 GB/s	4 x IB NDR (4 x 200 Gbit/s)	4 x 120 GB LPDDR5X (CPU), 4 x 96 GB HBM3 (GPU)	680 W (Superchip)
GH200 (JURECA)	1 x NVIDIA GH200 - 480 GB (1 x 72 core Grace CPU + 1x H100 GPU)		NVLink-C2C 900 GB/s	-		480 GB LPDDR5X (CPU), 96 GB HBM3 (GPU)	700 W (Superchip)
H100 (JURECA)	4 x NVIDIA H100 GPU (PCle)	2 x 72 core Intel Xeon Platinum 8452Y	PCle Gen5 128 GB/s	GPU 0-1 and GPU 2-3 are linked via bridge with 12 NVLink4 (25 GB/s) (Total: 600 GB/s)		512 GB DDR5-4800 (CPU), 80 GB HBM2e (GPU)	350 W
H100 (WestAl)	4 x NVIDIA H100 GPU (SXM5)	2 x 32 core Intel Xeon Platinum 8462Y	PCle Gen5 128 GB/s	NVLink4 900 GB/s	2 x IB NDR (2 x 400 Gbit/s)	512 GB DDR5-4800 (CPU), 94 GB HBM2e (GPU)	700 W

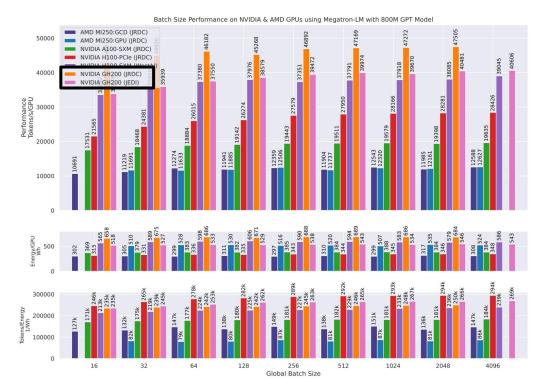
ACCELERATORS


[6]: <u>https://apps.fz-juelich.de/jsc/hps/jureca</u>
[7]: <u>https://apps.fz-juelich.de/jsc/hps/jedi</u>
[8]: <u>https://westai.de/</u>

JURECA (JRDC), JEDI & WestAI Systems

Platform	Accelerator (Acc)	CPU	CPU - ACC Interconnect	Acc - Acc Intraconnect	Acc - Acc Interconnect	Memory	TDP / Device
A100 (JURECA)	4 x NVIDIA A100 GPU (SXM4)	2 x 64 core AMD EPYC 7742	PCIe Gen4 64 GB/s	NVLink3 600 GB/s	2 x IB HDR (2 x 200 Gbit/s)	512 GB DDR4-3200 (CPU), 4 x 40 GB HBM2e(GPU)	400 W
MI200 (JURECA)	4 x AMD MI250 GPU (OAM)	2 x 48 core AMD EPYC 7413	PCIe Gen4 64 GB/s	Infinity Fabric 500 GB/s	2 x IB HDR (2 x 200 Gbit/s)	512 GB DDR4-3200 (CPU), 4 x 128 GB HBM2e (GPU)	560 W
IPU-M2000 (JURECA)	4 x Graphcore GC200 IPU	2 x 48 core AMD EPYC 7413	Ethernet 100 GbE	IPU-Links Single IPU connects to 2 other IPUs with 2 links each and one with 4 links with 32GB/s bi-direction/link (Total: 256 GB/s)		512 GB DDR4-3200 (CPU)	300 W

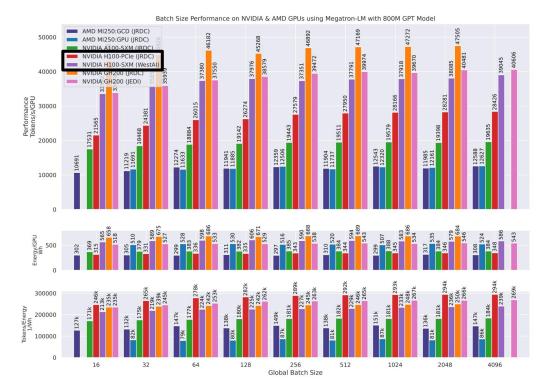
RESULTS NLP Benchmark on GPU



- Batch size performance in tokens/s/GPU
- 800M GPT model trained on OSCAR using Megatron-LM
- Single node with Data Parallelism (DP) of 4 (except GH200 JRDC)

Mitglied der Helmholtz-Gemeinschaft

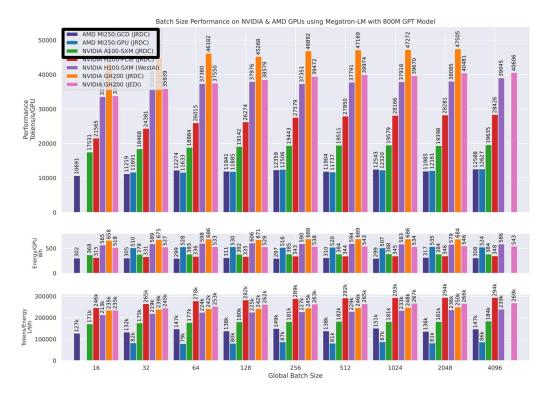
NLP Benchmark on GH200 Superchip



- Tokens/s/GPU:
 - JRDC > JEDI by 20% since no parallelisation
 2.45× than A100
- Energy/GPU:
 JRDC > JEDI by 20% due to higher TDP (700W vs. 680W)
- Tokens/Energy:
 JEDI slightly better

Mitglied der Helmholtz-Gemeinschaft

NLP Benchmark on H100 GPU



- Tokens/s/GPU:
 - SXM > PCIe by 1.3x with 1.5x
 NVLink bandwidth and SXM5
 GPU form factor
- Energy/GPU:
 SXM > PCIe by 1.6x
 SXM TDP is 2x PCIe TDP

Tokens/Energy H100 PCIe outperforms all devices upto 25%

NLP Benchmark on A100 & MI250

- Tokens/s/GPU:

 A100 > MI250 by 1.6x
 MI250: GCD slightly better than GPU due to lesser DP (4 v/s 8)
- Energy/GPU:
 - MI250 > A100 by 1.3x due to higher TDP (560 W v/s 400 W)
 - <u>MĬ250:</u> GPU > GCD by 1.7x due to higher DP

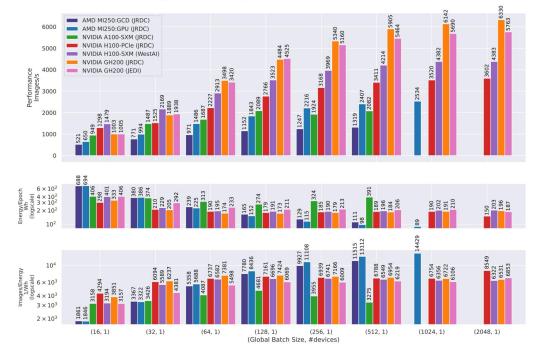
Tokens/Energy <u>MI250</u>: GCD > GPU by 1.7x A100 > MI250 GPU by 2x

NLP Benchmark on Graphcore IPU M2000 POD4

Batch Size	Tokens/Time 1/s	Energy/Epoch/IPU Wh	Tokens/Energy 1/Wh
64	64.99	15.68	4.08
128	97.21	18.20	7.03
256	129.96	18.37	13.93
512	155.72	18.56	27.60
1024	172.94	19.07	53.71
2048	183.37	20.05	102.13
4096	188.88	21.88	187.22
8192	191.86	25.47	321.34
16384	193.41	33.00	496.43

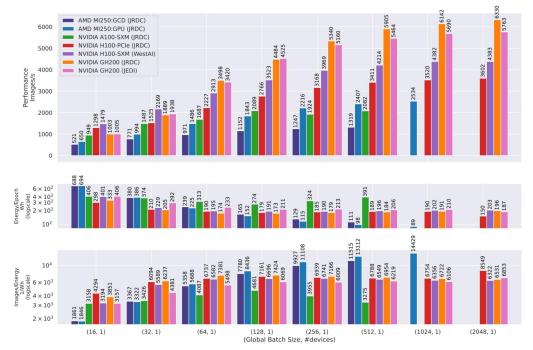
 Batch size performance in tokens/s (1 Epoch = 4*Batch size)

NLP Benchmark


- **117M GPT** model trained on synthetic data using vendor benchmark
- Single node with Pipeline Parallelism (PP) of 4
- Performance saturates with large batch sizes due to limited SRAM (3.6 GB) and pipeline bubbles
- Max energy of 33 Wh/IPU

CV Benchmark on GPU

ResNet-50 TensorFlow Benchmark on 1 Device of Nvidia & AMD Systems with Energy Measurements using ImageNet Data (1 Epoch = 1281167 Samples)


- Batch size performance in images/s on single device
- ResNet50 model trained on ImageNet using TensorFlow benchmark

Mitglied der Helmholtz-Gemeinschaft

CV Benchmark on GPU

ResNet-50 TensorFlow Benchmark on 1 Device of Nvidia & AMD Systems with Energy Measurements using ImageNet Data (1 Epoch = 1281167 Samples)

CV Benchmark

Images/s:

- <u>GH200:</u> JRDC > JEDI, more evident in larger batchsize
- <u>H100:</u> SXM > PCIe, higher TDP
 SXM form factor
- <u>MI250</u>: GPU > GCD due to parallelisation
- A100 > MI250 for small batch size

• Images/Energy:

- H100-PCIe and GH200(JRDC)
- for small batch size
- MI250 for large batch size

CV Benchmark on Graphcore IPU M2000 POD4

Batch Size	Images/Time 1/s	Energy/Epoch Wh	Images/Energy 1/Wh
16	1827.72	32.09	39925.87
32	1857.90	31.73	40382.19
64	1879.29	31.75	40346.18
128	1888.11	31.67	40452.50
256	1887.23	31.58	40563.65
512	1891.74	31.49	40689.85
1024	1893.07	31.50	40668.79
2048	1889.87	31.53	40636.28
4096	1891.58	31.51	40660.14

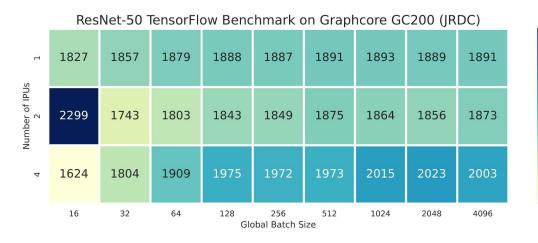
- Batch size performance on single IPU
- ResNet50 model trained on ImageNet data using vendor benchmark

CV Benchmark

- Performance does not scale well due to multiple DRAM access
- Model graph compilation ≅ 1 h, while execution ≅ 10 - 15 mins

- 2200

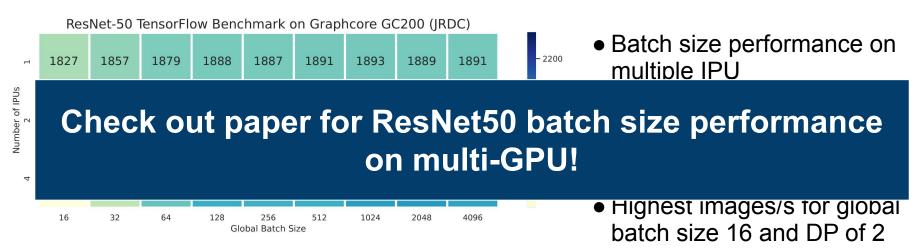
- 2100


– 2000 – mages/sec

- 1800

- 1700

CV Benchmark on Graphcore IPU M2000 POD4


- Batch size performance on multiple IPU
- Performance increases with batch size
- Highest images/s for global batch size 16 and DP of 2

CV Benchmark on Graphcore IPU M2000 POD4

CHALLENGES, INSIGHTS, NEXT STEPS

- Ensuring compatibility across accelerators is challenging
- Standardizing benchmarks across diverse accelerators is difficult
- Vendor support and optimizations vary
- Integrating containers with HPC and Slurm schedulers is complex
- System-specific optimizations (e.g., CPU-GPU affinity, MPI threads) are crucial
- Next
 - Expand support for new accelerators
 - Add more AI workloads, inference and communication benchmarks

CONCLUSION

Performance Trends

- Newer GPU generations show performance gains, with GH200 nodes in the lead
- H100 (SXM) surpasses H100 (PCIe) with NVLink higher bandwidth and SXM form factor

NLP Benchmark

- GH200 (JEDI) lags behind GH200 (JRDC) due to data parallelism overhead
- AMD MI250 (4 GCDs) slightly outperforms 4 GPUs, reflecting data parallelism limits
- GC200 IPU improves tokens/s with batch size but remains less efficient than GPUs due to pipeline bubbles
- H100 (PCIe) is most energy efficient, constrained by PCIe power limits

CV Benchmark

- AMD MI250 achieves higher throughput with 2 GCDs than a single GCD
- GC200 IPU reaches peak performance within SRAM limits
- AMD MI250 is energy efficient at larger batch sizes, while GH200 and H100 excel at smaller ones

ACKNOWLEDGEMENTS

• Funding

- Funded by BMWK via OpenGPT-X (project no. 68GX21007D) and EuroHPC (Grant 955513)
- Co-funded by BMBF through the MAELSTROM project (ref. 16HPC029)
- Acknowledge use of JURECA-DC, JURECA-DC Evaluation Platform, WestAl infrastructure, and JUPITER platform JEDI
- CARAML Team

Dr. Carolin Penke

Dr. Andreas Herten

